Menu

Blog

Page 8096

Dec 26, 2019

Scientists Have Officially Found a Mineral Never Before Seen in Nature

Posted by in category: space

It was found along the side of a road in a remote Australian gold rush town. In the old days, Wedderburn was a hotspot for prospectors – it occasionally still is – but nobody there had ever seen a nugget quite like this one.

The Wedderburn meteorite, found just north-east of the town in 1951, was a small 210-gram chunk of strange-looking space rock that fell out of the sky. For decades, scientists have been trying to decipher its secrets, and researchers just decoded another.

In a study published in August this year, led by Caltech mineralogist Chi Ma, scientists analysed the Wedderburn meteorite and verified the first natural occurrence of what they call ‘edscottite’: a rare form of iron-carbide mineral that’s never been found in nature.

Dec 26, 2019

New Promise for Those Who Suffer from Face Blindness

Posted by in category: futurism

Improvements are seen after playing a modified version of Guess Who?

Dec 26, 2019

It’s time to reveal Jurassic Park isn’t science fiction I guess

Posted by in category: futurism

Is that all this means?

#propaganda

Dec 26, 2019

The Construction Robots Building Space Colonies

Posted by in categories: robotics/AI, space travel

Sending construction robots into outer space will help pave the way for human exploration, but there are some real challenges that lie ahead.

Dec 26, 2019

Longevity escape velocity

Posted by in categories: biotech/medical, life extension, Ray Kurzweil, sustainability

In the life extension movement, longevity escape velocity (sometimes referred to as Actuarial escape velocity[1]) is a hypothetical situation in which life expectancy is extended longer than the time that is passing. For example, in a given year in which longevity escape velocity would be maintained, technological advances would increase life expectancy more than the year that just went by.

Life expectancy increases slightly every year as treatment strategies and technologies improve. At present, more than one year of research is required for each additional year of expected life. Longevity escape velocity occurs when this ratio reverses, so that life expectancy increases faster than one year per one year of research, as long as that rate of advance is sustainable.[2][3][4]

The concept was first publicly proposed by David Gobel, co-founder of the Methuselah Foundation (MF). The idea has been championed by biogerontologist Aubrey de Grey[5] (the other co-founder of the MF), and futurist Ray Kurzweil,[6] who named one of his books, Fantastic Voyage: Live Long Enough to Live Forever, after the concept. These two claim that by putting further pressure on science and medicine to focus research on increasing limits of aging, rather than continuing along at its current pace, more lives will be saved in the future, even if the benefit is not immediately apparent.[2].

Dec 26, 2019

Hayley Harrison Photo 3

Posted by in category: futurism

Dec 26, 2019

Podcast #39: Quantum Computing, The State of The Art, featuring whurley

Posted by in categories: bioengineering, quantum physics, robotics/AI

“As an entrepreneur I like to know the next two or three things I might start a company on. For me it was robotics, bio-hacking, and quantum.”–whurley.

Dec 26, 2019

Quantum Teleportation Reported in a Qutrit For The First Time

Posted by in categories: computing, quantum physics

Earlier this year, we celebrated a first in the field of quantum physics: scientists were able to ‘teleport’ a qutrit, or a piece of quantum information based on three states, opening up a whole host of new possibilities for quantum computing and communication.

Up until then, quantum teleportation had only been managed with qubits, albeit over impressively long distances. This proof-of-concept study suggests future quantum networks will be able to carry much more data and with less interference than we thought.

If you’re new to the idea of qutrits, first let’s take a step back. Simply put, the small data units we know as bits in classical computing can be in one of two states: a 0 or a 1. But in quantum computing, we have the qubit, which can be both a 0 and 1 at the same time (known as superposition).

Dec 26, 2019

The “Father of Artificial Intelligence” Says Singularity Is 30 Years Away

Posted by in categories: government, robotics/AI, singularity

All evidence points to the fact that the singularity is coming (regardless of which futurist you believe).


But what difference does it make? We are talking about a difference of just 15 years. The real question is, is the singularity actually on its way?

At the World Government Summit in Dubai, I spoke with Jürgen Schmidhuber, who is the Co-Founder and Chief Scientist at AI company NNAISENSE, Director of the Swiss AI lab IDSIA, and heralded by some as the “father of artificial intelligence” to find out.

Continue reading “The ‘Father of Artificial Intelligence’ Says Singularity Is 30 Years Away” »

Dec 26, 2019

Study reveals the Great Pyramid of Giza can focus electromagnetic energy

Posted by in categories: existential risks, nanotechnology, physics, solar power, sustainability

An international research group has applied methods of theoretical physics to investigate the electromagnetic response of the Great Pyramid to radio waves. Scientists predicted that under resonance conditions, the pyramid can concentrate electromagnetic energy in its internal chambers and under the base. The research group plans to use these theoretical results to design nanoparticles capable of reproducing similar effects in the optical range. Such nanoparticles may be used, for example, to develop sensors and highly efficient solar cells. The study was published in the Journal of Applied Physics.

While Egyptian are surrounded by many myths and legends, researchers have little scientifically reliable information about their physical properties. Physicists recently took an interest in how the Great Pyramid would interact with electromagnetic waves of a resonant length. Calculations showed that in the resonant state, the pyramid can concentrate in the its internal chambers as well as under its base, where the third unfinished chamber is located.

These conclusions were derived on the basis of numerical modeling and analytical methods of physics. The researchers first estimated that resonances in the pyramid can be induced by radio waves with a length ranging from 200 to 600 meters. Then they made a model of the electromagnetic response of the pyramid and calculated the extinction cross section. This value helps to estimate which part of the incident wave energy can be scattered or absorbed by the pyramid under resonant conditions. Finally, for the same conditions, the scientists obtained the electromagnetic field distribution inside the pyramid.