Menu

Blog

Page 7730

Mar 14, 2020

SpaceX readying for Sunday’s sixth Starlink launch, first fifth booster flight

Posted by in category: satellites

SpaceX is preparing its Falcon 9 to launch the Starlink V1.0 L5 mission, although the launch date has been moved to Sunday. This mission will be the first Starlink launch from LC-39A at Kennedy Space Center, and the first from the pad since the Crew Dragon In-Flight Abort Test in January 2020. The first stage is B1048.5 – marking the first time a Falcon 9 core flies for the fifth time. The launch is now scheduled for 9:22 AM Eastern on March 15.

Lead Image by Mike Deep Starlink launch:

Continue reading “SpaceX readying for Sunday’s sixth Starlink launch, first fifth booster flight” »

Mar 14, 2020

The Future is Now. Biomedical advances that will change the human body

Posted by in categories: 3D printing, biotech/medical, computing, cyborgs, engineering, life extension, transhumanism

Dreams of human immortality may remain so, but extending our lives beyond 100, even 150 years, can soon become a reality. ‘The Future is Now’ explores ground-breaking technology that might help us to slow down the ageing process and overcome our physical limitations.

3D-printing of brand new human organs, controlling bionic prosthetics with your mind, or invading your body with disease-fighting microrobots. Hosts Kate and Talish bring you the latest developments in biomedical engineering.

Continue reading “The Future is Now. Biomedical advances that will change the human body” »

Mar 13, 2020

Watch how much Boston Dynamics’ bipedal robots improved in 10 years

Posted by in category: robotics/AI

A side-by-side comparison shows just how much Boston Dynamics’ bipedal robots improved in 10 years. The progress is astounding.

Mar 13, 2020

These two tiny spacecraft will help pave the way for astronauts to return to the moon

Posted by in category: satellites

NASA has selected two cubesat missions to launch as part of the Artemis project to return humans to the moon.

Mar 13, 2020

Scientists isolate coronavirus strain responsible for deadly Covid-19 outbreak

Posted by in category: biotech/medical

Canadian research team says work will help inform global response to worsening pandemic.

Mar 13, 2020

Chinese businessman to donate 500,000 test kits and 1 million masks to the U.S.

Posted by in categories: biotech/medical, business

Asia’s richest man announced his intention on Friday to ship 500,000 testing kits and 1 million masks to the U.S. in an effort to combat the coronavirus pandemic.

Jack Ma’s charitable foundation and his China-based company’s foundation, the Alibaba Foundation, have also sourced and donated supplies to other countries being hit by the virus, including Japan, Korea, Italy, Iran and Spain.

Mar 13, 2020

Ogba Educational Clinic Photo

Posted by in category: education

THIS!! 100%%!%%

And honestly the biggest one for me: many people with disabilities can work remotely and there should be more roles and opportunities offered to accommodate many mobility issues.

Mar 13, 2020

First-time direct proof of chemical reactions in particulates

Posted by in categories: environmental, sustainability

Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before. Using it, they disproved an established doctrine: that molecules in aerosols undergo no further chemical transformations because they are enclosed in other suspended particulate matter. In the smog chamber at PSI, they analysed chemical compounds directly in aerosols and observed how molecules dissociated and thus released gaseous formic acid into the atmosphere. These findings will help to improve the understanding of global processes involved in cloud formation and air pollution, and to refine the corresponding models. The results of this investigation are published today in the journal Science Advances.

The familiar scent of a pine forest is caused by α-pinene. This is one of the in the oils of conifer trees, and it also occurs in eucalyptus and rosemary. The smell triggers pleasant feelings in most people. Less pleasant is that under the influence of radicals, the compound changes into other compounds in the atmosphere, so-called highly oxidised . Some of these are reactive and to some extent harmful substances. They have only recently come under scrutiny by atmospheric researchers, and their role in cloud formation is not yet understood.

These highly oxidized organic are less volatile than the starting substance α-pinene and therefore condense easily. Together with and other solid and liquid substances in the air, they form what we call particulate matter or aerosols.

Mar 13, 2020

Initialization of quantum simulators

Posted by in categories: biological, particle physics, quantum physics

Simulating computationally complex many-body problems on a quantum simulator has great potential to deliver insights into physical, chemical and biological systems. Physicists had previously implemented Hamiltonian dynamics but the problem of initiating quantum simulators to a suitable quantum state remains unsolved. In a new report on Science Advances, Meghana Raghunandan and a research team at the institute for theoretical physics, QUEST institute and the Institute for quantum optics in Germany demonstrated a new approach. While the initialization protocol developed in the work was largely independent of the physical realization of the simulation device, the team provided an example of implementing a trapped ion quantum simulator.

Quantum simulation is an emergent technology aimed at solving important open problems relative to high-temperature superconductivity, interacting quantum field theories or many-body localization. A series of experiments have already demonstrated the successful implementation of Hamiltonian dynamics within a quantum simulator—however, the approach can become challenging across quantum phase transitions. In the new strategy, Raghunandan et al. overcame this problem by building on recent advances in the use of dissipative quantum systems to engineer interesting many-body states.

Almost all many-body Hamiltonians of interest remain outside a previously investigated class and therefore require generalization of the dissipative state preparation procedure. The research team therefore presented a previously unexplored paradigm for the dissipative initialization of a quantum simulator by coupling the many-body system performing the quantum simulation to a dissipatively driven auxiliary particle. They chose the energy splitting within the auxiliary particle to become resonant with the many-body excitation gap of the system of interest; described as the difference of the ground-state energy and the energy of the first excited state. During such conditions of resonance, the energy of the quantum simulator could be transferred efficiently to the auxiliary particle for the former to be cooled sympathetically, i.e., particles of one type, cooled particles of another type.

Mar 13, 2020

Searching for discrete time crystals in classical many-body systems

Posted by in category: quantum physics

Our current, well-established understanding of phases of matter primarily relates to systems that are at or near thermal equilibrium. However, there is a rich world of systems that are not in a state of equilibrium, which could host new and fascinating phases of matter.

Recently, studies focusing on systems outside of have led to the discovery of new phases in periodically driven quantum systems, the most well-known of which is the discrete time crystal (DTC) phase. This unique phase is characterized by collective subharmonic oscillations arising from the interplay between many-body interactions and non-equilibrium driving, which leads to a loss of ergodicity.

Interestingly, subharmonic oscillations are also known to be a characteristic of dynamical systems, such as predator-prey models and parametric resonances. Some researchers have thus been exploring the possibility that these may exhibit similar features to those observed in the DTC phase.