Menu

Blog

Page 7725

Jan 14, 2020

Life’s clockwork: Scientist shows how molecular engines keep us ticking

Posted by in category: biotech/medical

In the popular book The Demon in the Machine, physicist Paul Davies argues that what’s missing in the definition of life is how biological processes create “information,” and such information storage is the stuff of life, like a bird’s ability to navigate or a human’s ability to solve complex problems. The “Demon” Davies refers to is Maxwell’s Demon, as proposed by 19th century physicist James Clerk Maxwell as a thought experiment. Maxwell’s hypothetical “demon” controls a gate between two chambers of gas and knows when to open the gate only to allow gas molecules moving faster than average to pass through it. This way, a chamber could be heated and create “energy” to be put to work. Such a demon would amount to a workaround of the Second Law of Thermodynamics. And that, as we know, is impossible. We also know, of course, that demons don’t exist.

However, living things use many protein devices called enzymes that mimic such a demon each time a muscle contracts or when any chemical reaction needs to be driven uphill and away from thermodynamic equilibrium like the gas molecules chosen by the demon. How these dynamic machines work has long been puzzling. Over the past 75 years, scientists have chipped away at this problem without identifying precise details of how any of these enzyme machines accomplishes the sleight of hand that sustains living things, such as humans who live in a chemical state far from equilibrium.

For the first time, in a paper published in Proteins: Structure, Function, and Bioinformatics by Charlie Carter, Ph.D., professor in the Department of Biochemistry and Biophysics at the UNC School of Medicine, and supported by the National Institute of General Medical Sciences, describes the details that enable one such machine to work like Maxwell’s demon.

Jan 14, 2020

AI Can Now Detect Signs Of Eye Diseases

Posted by in categories: biotech/medical, robotics/AI

Artificial Intelligence can now detect over 50 eyes diseases as accurately as doctors!

Jan 14, 2020

Hyperuniform disordered waveguides and devices for near infrared silicon photonics

Posted by in categories: chemistry, internet, physics, robotics/AI, space

In a new report published on Scientific Reports, Milan M. Milošević and an international research team at the Zepler Institute for Photonics and Nanoelectronics, Etaphase Incorporated and the Departments of Chemistry, Physics and Astronomy, in the U.S. and the U.K. Introduced a hyperuniform-disordered platform to realize near-infrared (NIR) photonic devices to create, detect and manipulate light. They built the device on a silicon-on-insulator (SOI) platform to demonstrate the functionality of the structures in a flexible, silicon-integrated circuit unconstrained by crystalline symmetries. The scientists reported results for passive device elements, including waveguides and resonators seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. The hyperuniform-disordered platform improved compactness and enhanced energy efficiency as well as temperature stability, compared to silicon photonic devices fabricated on rib and strip waveguides.

Academic and commercial efforts worldwide in the field of silicon photonics have led to engineer optical data communications at the Terabit-scale at increasingly lower costs to meet the rapidly growing demand in data centers. Explosive growth in cloud computing and entertainment-on-demand pose increasingly challenging costs and energy requirements for , processing and storage. Optical interconnects can replace traditional copper-based solutions to offer steadily increasing potential to minimize latency and , while maximizing the bandwidth and reliability of the devices. Silicon photonics also leverage large-scale, complementary metal-oxide semiconductor (CMOS) manufacturing processes to produce high-performance optical transceivers with high yield at low-cost. The properties allow applications of optical transceivers (fiber optical technology to send and receive data) to be increasingly compelling across shorter distances.

More than three decades ago, physicist Richard Soref identified silicon as a promising material for photonic integration. Leading to the present-day steady development and rapid production of increasingly complex photonic integrated circuits (PICs). Researchers can integrate large numbers of massively-parallel compact energy-efficient optical components on a single chip for cloud computing applications from deep learning to artificial intelligence and the internet of things. Compared to the limited scope of commercial silicon photonic systems, photonic crystal (PhC) architectures promise smaller device sizes, although they are withheld by layout constraints imposed by waveguide requirements along the photonic crystal’s axis. Until recently, photonic band gap (PBG) structures that efficiently guide light were limited to photonic crystal platforms. Now, newer classes of PBG structures include photonic quasicrystals, hyperuniform disordered solids (HUDs) and local self-uniform structures.

Jan 14, 2020

Lucy Mission Overview: Journey to Explore the Trojan Asteroids

Posted by in categories: materials, satellites

Launching in late 2021, Lucy will be the first space mission to explore the Trojan asteroids. These are a population of small bodies that are left over from the formation of the solar system. They lead or follow Jupiter in their orbit around the Sun, and they may tell us about the origins of organic materials on Earth.

Lucy will fly by and carry out remote sensing on six different Trojan asteroids and will study surface geology, surface color and composition, asteroid interiors/bulk properties, and will look at the satellites and rings of the Trojans.

Jan 14, 2020

Underdog Pharma Could Reverse Cardiovascular Disease Which is the Leading Medical Problem

Posted by in categories: biotech/medical, life extension

Underdog Pharma is developing disease-modifying treatments for atherosclerosis and other age-related diseases.

They want to prevent or reverse atherosclerosis by removing a harmful lipid known as 7-ketocholesterol (7KC) from the arterial walls.

Continue reading “Underdog Pharma Could Reverse Cardiovascular Disease Which is the Leading Medical Problem” »

Jan 14, 2020

This CRISPR tool costs $10,000. Researchers made a version that costs 23 cents

Posted by in categories: 3D printing, biotech/medical

In microbiology, an electroporator is a tool that allows scientists to apply electricity to a cell to temporarily breach its cell wall so you can introduce chemicals, drugs or DNA to the cell. These tools are extremely useful in the lab, but they’re also very expensive. They cost anywhere from roughly $3,000 to $10,000.

Researchers at Georgia Tech just revealed they’ve found a way to create an electroporator that costs next to nothing to make. Their research was just published in the journal PLOS Biology.

These researchers were able to create a version of the electroporator that can generate short bursts of more than 2,000 volts of electricity, which they named the “ElectroPen,” using a crystal from a common lighter, copper-plated wire, heat-shrinking wire insulator and aluminum tape. They then created a case for these components using a 3D printer. They claim you can assemble it within 15 minutes once you have all the pieces.

Jan 14, 2020

A parasite that makes mice unafraid of cats may quash other fears too

Posted by in category: futurism

The parasite Toxoplasma gondii turns mice’s fear of cats into curiosity. The parasite emboldens mice in other situations too, a new study finds.

Firmafotografen/getty images plus.

Jan 14, 2020

Imagine a world without hunger, then make it happen with systems thinking

Posted by in category: food

Feeding the world involves tackling all aspects of the food system.

Jan 14, 2020

IBM’s Plan to Design Solid-State Batteries Using Quantum Tech

Posted by in categories: computing, quantum physics, solar power, sustainability

Batteries are the key to decarboni z ing both transport and the grid, but today’s technology is still a long way from living up to this promise. IBM seems to have decided its computing chops are the key to solving the problem.

Lithium-ion batteries are still the gold standard technology in this field, and they’ve come a long way; 10 years ago they could just about get your iPod through the day, today they can power high-performance cars over hundreds of miles.

But if we want to reach a point w h ere batteries can outperform gasoline or store huge amounts of solar energy, we need some breakthroughs. So IBM has teamed up with Mercedes-Benz and its parent company Daimler to develop new batteries that could match up to our needs.

Jan 14, 2020

Neuroscientists Discover Brain Pressure Controls Eye Pressure, Revealing New Avenues for Glaucoma Treatment

Posted by in categories: biotech/medical, neuroscience

https://www.usf.edu/…/neuroscientists-discover-brain-pressu…

If you found this article interesting please like and share it from our Facebook page: https://m.facebook.com/story.php?story_fbid=511500699478279&id=383136302314720


Researchers at the University of South Florida have discovered a novel feedback pathway from the brain to the eye that modulates eye pressure – a significant advancement in the effort to diagnose and treat glaucoma. Glaucoma is associated with increased pressure in the eye due to a reduce ability of the eye to maintain proper fluid drainage. The heightened pressure applies mechanical strain to the optic nerve as the nerve exits the eye, resulting in vision loss and potential blindness.

Continue reading “Neuroscientists Discover Brain Pressure Controls Eye Pressure, Revealing New Avenues for Glaucoma Treatment” »