Menu

Blog

Page 6248

Apr 28, 2021

Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away

Posted by in category: cosmology

A red giant star may have a black hole companion that is only three solar masses in size.


In theory, a black hole is easy to make. Simply take a lump of matter, squeeze it into a sphere with a radius smaller than the Schwarzschild radius, and poof! You have a black hole. In practice, things aren’t so easy. When you squeeze matter, it pushes back, so it takes a star’s worth of weight to squeeze hard enough. Because of this, it’s generally thought that even the smallest black holes must be at least 5 solar masses in size. But a recent study shows the lower bound might be even smaller.

The work focuses red giant star known as V723 Monoceros. This star has a periodic wobble, meaning it’s locked in orbit with a companion object. The companion is too small and dark to see directly, so it must be either a neutron star or black hole. Upon closer inspection, it turns out the star is not just wobbling in orbit with its companion, it’s being gravitationally deformed by its companion, an effect known as tidal disruption.

Continue reading “Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away” »

Apr 28, 2021

More Compact and Efficient Vertical Turbines Could Be the Future for Wind Farms

Posted by in categories: computing, engineering, mathematics, sustainability

The now-familiar sight of traditional propeller wind turbines could be replaced in the future with wind farms containing more compact and efficient vertical turbines.

New research from Oxford Brookes University has found that the vertical turbine design is far more efficient than traditional turbines in large-scale wind farms, and when set in pairs the vertical turbines increase each other’s performance by up to 15%.

A research team from the School of Engineering, Computing and Mathematics (ECM) at Oxford Brookes led by Professor Iakovos Tzanakis conducted an in-depth study using more than 11500 hours of computer simulation to show that wind farms can perform more efficiently by substituting the traditional propeller-type Horizontal Axis Wind Turbines (HAWTs), for compact Vertical Axis Wind Turbines (VAWTs).

Apr 28, 2021

Skin and bones repaired by bioprinting during surgery

Posted by in categories: bioprinting, biotech/medical, engineering

Fixing traumatic injuries to the skin and bones of the face and skull is difficult because of the many layers of different types of tissues involved, but now, researchers have repaired such defects in a rat model using bioprinting during surgery, and their work may lead to faster and better methods of healing skin and bones.

“This work is clinically significant,” said Ibrahim T. Ozbolat, Hartz Family Career Development Associate Professor of Engineering Science and Mechanics, Biomedical Engineering and Neurosurgery, Penn State. “Dealing with composite defects, fixing hard and at once, is difficult. And for the craniofacial area, the results have to be esthetically pleasing.”

Currently, fixing a hole in the skull involving both and soft tissue requires using bone from another part of the patient’s body or a cadaver. The bone must be covered by soft tissue with , also harvested from somewhere else, or the bone will die. Then surgeons need to repair the soft tissue and skin.

Apr 28, 2021

Bawa Jain — The Centre for Responsible Leadership — Interfaith Solutions For Global Challenges

Posted by in category: materials

Interfaith solutions for major global challenges — bawa jain — founder, the centre for responsible leadership.


Bawa Jain is a visionary leader in the interfaith movement throughout the world.

Continue reading “Bawa Jain — The Centre for Responsible Leadership — Interfaith Solutions For Global Challenges” »

Apr 28, 2021

Anger Kills You. How Anger Affects The Brain And Body

Posted by in category: neuroscience

Apr 27, 2021

Nvidia Entangled in Quantum Simulators

Posted by in categories: computing, information science, quantum physics

Quantum simulators are a strange breed of systems for purposes that might seem a bit nebulous from the outset. These are often HPC clusters with fast interconnects and powerful server processors (although not usually equipped with accelerators) that run a literal simulation of how various quantum circuits function for design and testing of quantum hardware and algorithms. Quantum simulators do more than just test. They can also be used to emulate quantum problem solving and serve as a novel approach to tackling problems without all the quantum hardware complexity.

Despite the various uses, there’s only so much commercial demand for quantum simulators. Companies like IBM have their own internally and for others, Atos/Bull have created these based on their big memory Sequanna systems but these are, as one might imagine, niche machines for special purposes. Nonetheless, Nvidia sees enough opportunity in this arena to make an announcement at their GTC event about the performance of quantum simulators using the DGX A100 and its own custom-cooked quantum development software stack, called CuQuantum.

After all, it is probably important for Nvidia to have some kind of stake in quantum before (and if) it ever really takes off, especially in large-scale and scientific computing. What better way to get an insider view than to work with quantum hardware and software developers who are designing better codes and qubits via a benchmark and testing environment?

Apr 27, 2021

Google performed the first quantum simulation of a chemical reaction

Posted by in categories: chemistry, computing, particle physics, quantum physics

Circa 2020 o.,.o!


By Leah Crane.

Google researchers have used a quantum computer to simulate a chemical reaction for the first time. The reaction is a simple one, but this marks a step towards finding a practical use for quantum computers.

Continue reading “Google performed the first quantum simulation of a chemical reaction” »

Apr 27, 2021

Decoding Quantum Errors Using Subspace Expansions

Posted by in categories: computing, quantum physics

O,.o circa 2020.


With the rapid developments in quantum hardware comes a push towards the first practical applications on these devices. While fully fault-tolerant quantum computers may still be years away, one may ask if there exist intermediate forms of error correction or mitigation that might enable practical applications before then. In this work, we consider the idea of post-processing error decoders using existing quantum codes, which are capable of mitigating errors on encoded logical qubits using classical post-processing with no complicated syndrome measurements or additional qubits beyond those used for the logical qubits. This greatly simplifies the experimental exploration of quantum codes on near-term devices, removing the need for locality of syndromes or fast feed-forward, allowing one to study performance aspects of codes on real devices. We provide a general construction equipped with a simple stochastic sampling scheme that does not depend explicitly on a number of terms that we extend to approximate projectors within a subspace. This theory then allows one to generalize to the correction of some logical errors in the code space, correction of some physical unencoded Hamiltonians without engineered symmetries, and corrections derived from approximate symmetries. In this work, we develop the theory of the method and demonstrate it on a simple example with the perfect [[5, 1, 3]] code, which exhibits a pseudo-threshold of p≈0.50 under a single qubit depolarizing channel applied to all qubits. We also provide a demonstration under the application of a logical operation and performance on an unencoded hydrogen molecule, which exhibits a significant improvement over the entire range of possible errors incurred under a depolarizing channel.

Apr 27, 2021

Physicists net neutron star gold from measurement of lead

Posted by in categories: chemistry, particle physics, space

Nuclear physicists have made a new, highly accurate measurement of the thickness of the neutron “skin” that encompasses the lead nucleus in experiments conducted at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility and just published in Physical Review Letters. The result, which revealed a neutron skin thickness of .28 millionths of a nanometer, has important implications for the structure and size of neutron stars.

The protons and neutrons that form the nucleus at the heart of every atom in the universe help determine each atom’s identity and properties. Nuclear physicists are studying different nuclei to learn more about how these protons and neutrons act inside the nucleus. The Lead Radius Experiment collaboration, called PREx (after the chemical symbol for lead, Pb), is studying the fine details of how protons and neutrons are distributed in lead nuclei.

“The question is about where the neutrons are in lead. Lead is a heavy nucleus—there’s extra neutrons, but as far as the is concerned, an equal mix of protons and neutrons works better,” said Kent Paschke, a professor at the University of Virginia and experiment co-spokesperson.

Apr 27, 2021

J&J Bets Up to $780 Million on Cidara’s Universal Influenza Treatment

Posted by in category: biotech/medical

josefkubes/Shutterstock

Cidara Therapeutics inked a deal worth up to $780 million with Johnson & Johnson to develop and commercialize Cidara’s candidate CD388 for the prevention and treatment of seasonal and pandemic influenza.

San Diego-based Cidara Therapeutics will receive an upfront payment of $27 million from Janssen, a division of J&J for the development of CD388, one of Cidara’s Cloudbreak antiviral conjugates (AVCs). Cidara, which is focusing on the development of therapeutics for serious fungal or viral infections, said CD388 has the potential to be a true universal preventative for the flu, with distinct advantages over vaccines that can be used across all populations, including the young, elderly and immunocompromised. Additionally, the company believed CD388 is capable of providing protection from all influenza strains, including seasonal and pandemic influenza A, influenza B and all major clinically characterized drug resistant influenza strains. Not only that, but Cidara suggests CD388 could provide a therapeutic role, such as the widely-used Tamiflu.