Menu

Blog

Page 5285

Mar 26, 2022

Army Cutworm Reaching Treatment Thresholds in Kansas Winter Canola

Posted by in categories: chemistry, economics

With the onset of warmer temperatures, winter canola is breaking dormancy and army cutworms are now present in fields across Kansas. Significant army cutworm pressure has been observed in fields northwest of Caldwell in Sumner County.

Army cutworms feed aggressively and significant damage can occur in a short period of time. Smaller plants are most susceptible. The larvae feed on the leaf tissue, leaving the plants with a fed-on appearance (Figure 2). When minor feeding is observed, you may find leaves severed from the plant and laying on the soil surface. Where infestations are high, army cutworms will remove all leaf tissue, leaving only the base of the stem (Figure 3).

The economic threshold for chemical control is 1–2 cutworms per foot of row. Army cutworms behave nocturnally and typically spend the daylight hours below ground. When scouting, it is critical to dig in the soil around individual canola plants to find the larvae. However, it is not unusual to find army cutworm above ground when populations are high (Figure 1). The larvae are greenish-gray and often curl up into a C-shape.

Mar 26, 2022

DIY SLS 3D Printer Getting Ready To Print

Posted by in categories: electronics, materials

Ten years ago the concept of having on our desks an affordable 3D printer knocking out high quality reproducible prints, with sub-mm accuracy, in a wide range of colours and material properties would be the would be just a dream. But now, it is reality. The machines that are now so ubiquitous for us hackers, are largely operating with the FDM principle of shooting molten plastic out of a moving nozzle, but they’re not the only game in town. A technique that has also being around for donkeys’ years is SLS or Selective Laser Sintering, but machines of this type are big, heavy and expensive. However, getting one of those in your own ‘shop now is looking a little less like a dream and more of a reality, with the SLS4All project by [Tomas Starek] over on hackaday.io.

[Tomas] has been busy over the past year, working on the design of his machine and is now almost done with the building and testing of the hardware side. SLS printing works by using a roller to transfer a layer of powdered material over the print surface, and then steering a medium-power laser beam over the surface in order to heat and bond the powder grains into a solid mass. Then, the bed is lowered a little, and the process repeats. Heating of the bed, powder and surrounding air is critical, as is moisture control, plus keeping that laser beam shape consistent over the full bed area is a bit tricky as well. These are all hurdles [Tomas] has to overcome, but the test machine is completed and is in a good place to start this process control optimisation fun.

Hardware-wise, the frame is the usual aluminium extrusion and 3D printed affair, with solid aluminium plates all over the place where needed. Electronics are based around a Raspberry Pi (running Klipper) with a BigTreeTech 1.4 turbo mainboard handling the interfacing. The 5W blue laser is steered over the powder surface using a pair of galvanometers, which sounds easier to get right than it will be — we fully expect there to be some ‘fun’ to control the spot size and shape as well as ensure that it stays consistent over the full area of the build surface. Definitely fun times, and fingers crossed that [Tomas] irons out the details and gets some good prints out of it soon!

Mar 26, 2022

Researchers develop PERC solar cells with 100% recycled silicon

Posted by in categories: climatology, economics, solar power, sustainability

The installations of photovoltaic (PV) solar modules are growing extremely fast. As a result of the increase, the volume of discarded solar modules that end up on the recycling market annually will grow at the same rate in the near future. Currently, the aluminum, glass, and copper of the discarded modules are reprocessed; however, the silicon solar cells are not.

Now, researchers from the Fraunhofer Center for Silicon Photovoltaics CSP and the Fraunhofer Institute for Solar Energy Systems ISE, together with the largest German recycling company for PV modules, Reiling GmbH & Co. KG, have built new PERC solar cells with 100% crystalline silicon recycled from end-of-life photovoltaic panels.

The team has developed a process for recovering the silicon material with funding from the German Federal Ministry for Economic Affairs and Climate BMWK. The technique is claimed to recycle silicon from different types of crystalline silicon PV modules, regardless of manufacturer and origin.

Mar 26, 2022

4-word Facebook message you must ignore

Posted by in categories: cybercrime/malcode, finance

You’ve probably received this message already — just don’t open it. Details:


Facebook Messenger users have been told to ignore a four-letter message that could lead to disastrous financial consequences or stolen personal information.

Scammers use the instant messaging platform to send out a four-word “look what I found …” message, and a link from compromised accounts. These message also include emojis as well, 7News reports.

Continue reading “4-word Facebook message you must ignore” »

Mar 26, 2022

Two Gas Stations Sue Their Competitor Because Its Prices Are Too Low

Posted by in category: futurism

Imagine being so greedy that you’re willing to sue someone because they aren’t as greedy as you.

Mar 26, 2022

Straws, crystals and the quest for new subatomic physics

Posted by in category: particle physics

The Mu2e experiment at Fermilab will look for a never-before-seen subatomic phenomenon that, if observed, would transform our understanding of elementary particles: the direct conversion of a muon into an electron. An international collaboration of over 200 scientists is building the Mu2e precision particle detector that will hunt for new physics beyond the Standard Model.

Mar 26, 2022

Development of stretchable and printable free-form lithium-ion batteries

Posted by in categories: biotech/medical, wearables

A Korean research team has developed a soft, mechanically deformable, and stretchable lithium battery that can be used in the development of wearable devices, and examined the battery’s feasibility by printing them on clothing surfaces. The research team, led by Dr. Jeong Gon Son from the Soft Hybrid Materials Research Center at the Korea Institute of Science and Technology (KIST; President: Seok-Jin Yoon), announced that they had developed a lithium battery wherein all of the materials, including the anode, cathode, current collector, electrolytes, and encapsulant, are stretchable and printable. The lithium battery developed by the team possesses high capacity and free-form characteristics suitable for mechanical deformation.

Owing to the rapidly increasing demand for high-performance wearable devices—such as smart bands, implantable electronic devices such as pace-makers, and soft wearable devices for use in the realistic metaverse—the development of a that is soft and stretchable like the human skin and organs has been attracting interest.

The hard, inorganic electrode of a conventional battery comprises the majority of the battery’s volume, making it difficult to stretch. Other components, such as the separator and the current collector for drawing and transferring charges, must also be stretchable, and the liquid electrolyte leakage issue must also be resolved.

Mar 26, 2022

Scientists identify neurons in the brain that drive competition and social behavior within groups

Posted by in categories: food, futurism

Li and his colleagues found that the animals’ social ranking in the group was closely linked to the results of competition, and by examining recordings from neurons in the brains of mice in real time, the team discovered that neurons in the anterior cingulate region of the brain store this social ranking information to inform upcoming decisions.

“Collectively, these neurons held remarkably detailed representations of the group’s behavior and their dynamics as the animals competed together for food, in addition to information about the resources available and the outcome of their past interactions,” explains senior author Ziv M. Williams, MD, a neurosurgical oncologist at MGH. “Together, these neurons could even predict the animal’s own future success well before competition onset, meaning that they likely drove the animals’ competitive behavior based on whom they interacted with.”

Manipulating the activity of these neurons, on the other hand, could artificially increase or decrease an animal’s competitive effort and therefore control their ability to successfully compete against others. “In other words, we could tune up and down the animal’s competitive drive and do so selectively without affecting other aspects of their behavior such as simple speed or motivation,” says Williams.

Mar 26, 2022

Apollo 17 lunar sample opened for the 1st time

Posted by in category: space

Nearly 50 years after it was collected, a lunar sample from the Apollo 17 mission has finally been opened at NASA’s Johnson Space Center in Houston. It’s one of the last unopened samples from the final Apollo mission to land humans on the moon.

“We have had an opportunity to open up this incredibly precious sample that’s been saved for 50 years under vacuum and we finally get to see what treasures are held within,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington, in a statement.

It was collected by NASA astronauts Eugene Cernan and Harrison “Jack” Schmitt in December 1972 when they hammered 14-inch (36-centimeter) cylindrical drive tubes into a landslide deposit in the Taurus-Littrow Valley. The two astronauts vacuum-sealed the tube while still on the lunar surface.

Mar 26, 2022

Boston researchers find ‘vicious cycle’ between daytime napping and Alzheimer’s dementia

Posted by in categories: biotech/medical, life extension, neuroscience

Boston medical researchers in a new groundbreaking study have discovered a “vicious cycle” between daytime napping and Alzheimer’s dementia.

The Brigham and Women’s Hospital researchers found a link between the two: Excessive daytime napping predicted an increased future risk of Alzheimer’s dementia, and a diagnosis of Alzheimer’s dementia sped up the increase in daytime napping during aging.

Daytime napping is common among older adults, but researchers have not known the relationship between daytime napping and cognitive aging.