Menu

Blog

Page 4847

May 14, 2022

Xanadu announces programmable photonic quantum chip able to execute multiple algorithms

Posted by in categories: computing, information science, quantum physics

A team of researchers and engineers at Canadian company Xanadu Quantum Technologies Inc., working with the National Institute of Standards and Technology in the U.S., has developed a programmable, scalable photonic quantum chip that can execute multiple algorithms. In their paper published in the journal Nature, the group describes how they made their chip, its characteristics and how it can be used. Ulrik Andersen with the Technical University of Denmark has published a News & Views piece in the same journal issue outlining current research on quantum computers and the work by the team in Canada.

Scientists around the world are working to build a truly useful quantum that can perform calculations that would take traditional computers millions of years to carry out. To date, most such efforts have been focused on two main architectures—those based on superconducting electrical circuits and those based on trapped-ion technology. Both have their advantages and disadvantages, and both must operate in a supercooled environment, making them difficult to scale up. Receiving less attention is work using a photonics-based approach to building a quantum computer. Such an approach has been seen as less feasible because of the problems inherent in generating quantum states and also of transforming such states on demand. One big advantage photonics-based systems would have over the other two architectures is that they would not have to be chilled—they could work at room temperature.

In this new effort, the group at Xanadu has overcome some of the problems associated with photonics-based systems and created a working programmable photonic quantum chip that can execute multiple algorithms and can also be scaled up. They have named it the X8 photonic quantum processing unit. During operation, the is connected to what the team at Xanadu describe as a “squeezed light” source—infrared laser pulses working with microscopic resonators. This is because the new system performs continuous variable quantum computing rather than using single-photon generators.

May 14, 2022

Were Humans the First and Only Intelligent Species on Earth?

Posted by in category: futurism

Posted on Big Think.

May 14, 2022

Scientists Have Revived a Glimmer of Activity in Human Eyes After Death

Posted by in category: life extension

Scientists have momentarily restored a faint twinkle of life to dying cells in the human eye.

In order to better understand the way nerve cells succumb to a lack of oxygen, a team of US researchers measured activity in mouse and human retinal cells soon after their death.

Amazingly, with a few tweaks to the tissue’s environment, they were able to revive the cells’ ability to communicate hours later.

May 14, 2022

NASA InSight Still Hunting Marsquakes as Power Runs Down (News Audio + Visuals)

Posted by in categories: energy, space

In November 2018, NASA InSight landed in the Elysium Planitia region of Mars with the goal of studying the planet’s deep interior for the first time by using seismic signals to learn more about the properties of the planet’s crust, mantle, and core. Join us live at 11 a.m. PT (2 p.m. ET/1800 UTC) on May 17 as agency leadership and mission team members highlight the spacecraft’s science accomplishments, share details on its power situation, and discuss its future.

Speakers:
Lori Glaze, director of NASA’s Planetary Science Division at NASA Headquarters.
Bruce Banerdt, InSight principal investigator, NASA’s Jet Propulsion Laboratory.
Kathya Zamora Garcia, InSight deputy project manager, JPL

Continue reading “NASA InSight Still Hunting Marsquakes as Power Runs Down (News Audio + Visuals)” »

May 14, 2022

Mysterious invisible walls may have been discovered in outer space

Posted by in categories: particle physics, space

“Scientists suspect that a ”fifth force” may be at work in space. This force, which they believe is mediated by a hypothetical particle called a symmetron is responsible for creating invisible walls in space.

The walls aren’t necessarily like the walls of a room. Instead, they are more like barriers. And, they could help explain an intriguing part of space that has left astronomers scratching their heads for quite a while.

BGR.

Continue reading “Mysterious invisible walls may have been discovered in outer space” »

May 14, 2022

J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces

Posted by in categories: biotech/medical, computing, nanotechnology, quantum physics

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

Joe Lyding.
Silicon-Based Nanotechnology: There’s Still Plenty of Room at the Bottom.
Joe Lyding is a distinguished professor in Electrical and Computer Engineering at the University of Illinios. His career includes constructing the first atomic resolution scanning tunneling microscope, discovering new industrial uses for deuterium, studying quantum size effects down to 2nm lateral graphene dimensions, and much more. His current research is focused on carbon nanoelectronics. Specifically using carbon nanoelectronics based on carbon nanotubes and graphene for future semiconducting device applications.

Continue reading “J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces” »

May 14, 2022

Scientists have figured out a way to farm metals from plants

Posted by in categories: food, sustainability

According to The Guardian, there’s a team of researchers in northern Greece who have spent the last few years experimenting with ways to harvest metal though agriculture:

In a remote, beautiful field, high in the Pindus mountains in Epirus, they are experimenting with a trio of shrubs known to scientists as “hyperaccumulators”: plants which have evolved the capacity to thrive in naturally metal-rich soils that are toxic to most other kinds of life. They do this by drawing the metal out of the ground and storing it in their leaves and stems, where it can be harvested like any other crop. As well as providing a source for rare metals – in this case nickel, although hyperaccumulators have been found for zinc, aluminium, cadmium and many other metals, including gold – these plants actively benefit the earth by remediating the soil, making it suitable for growing other crops, and by sequestering carbon in their roots. One day, they might supplant more destructive and polluting forms of mining.

Imagine, finding a way to pull minerals out of the Earth … without violent colonization and destructive mining practices. Maybe us lowly humans could learn a thing or two from the flowers!

May 14, 2022

Astronomers might’ve discovered why Saturn’s moon Titan looks like Earth

Posted by in category: space

Titan looks suspiciously like our own planet when you observe it. However, Saturn’s moon and our own Earth couldn’t be any more different. Where landscapes are made of silicate-based sediments on Earth, many believe Titan’s landscapes are made of solid organic compounds. As such, they should be much more fragile than Earth’s. A new study may have figured out how the landscapes on Titan came to be.

May 14, 2022

Experimental Gene Therapy Increases Lifespan Of Mice By 41 Percent In Telomere Lengthening Study

Posted by in categories: biotech/medical, life extension

Telomeres are “caps” of non-coding DNA sequences present at both tips of our chromosomes, which are extremely important in the aging process. These caps protect our DNA as cells go through various life cycles of replication, however, each time a cell divides these telomeres are shortened and eventually contribute to disease and cellular aging.

Now, exciting new research published in the Journal PNAS has shown that an experimental gene therapy could be used to halt the shortening of these telomere caps in mice and by doing so increase the life span of these animals by up to 41 percent compared to controls.

Telomere length can be considered a marker of biological age and its shortening is a hallmark of a process called cellular senescence, which limits the replication of DNA in old damaged cells. As we age, telomere caps become shorter and shorter until the cell’s DNA becomes vulnerable to damage by cellular stresses that could lead to diseases such as cancer. Or the cell could ultimately reach senescence where it will no longer be able to replicate and so contribute to the aging process. For scientists looking at how to slow or even reverse aging, telomeres are of great interest.

May 13, 2022

Scientists just brought light-sensing cells in human eyes back to life

Posted by in categories: biotech/medical, neuroscience

Death may be the most uncanny topic to discuss for human beings. Even thinking about it is uncomfortable for some people.

To eliminate the mystery behind it, researchers worldwide are conducting scientific studies on death and coming up with surprising results, such as when researchers captured brainwaves during an individual’s death and found semblance to high cognition activities.

And now, a team of scientists from the U.S. may have found a way to revive a glimmer of activity in human eyes after death. According to a study published yesterday (May 11, 2022) in the journal Nature, the team has managed to revive the connections between light-sensing neurons in organ donor eyes.