Menu

Blog

Page 3730

Dec 20, 2022

Chemists make the unimaginable possible in crystalline materials discovery

Posted by in categories: chemistry, materials

The world’s best artists can take a handful of differently colored paints and create a museum-worthy canvas that looks like nothing else. They do so by drawing upon inspiration, knowledge of what’s been done in the past and design rules they learned after years in the studio.

Chemists work in a similar way when inventing new compounds. Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University and The University of Chicago have developed a new method for discovering and making new with two or more elements.

“We expect that our work will prove extremely valuable to the chemistry, materials and condensed matter communities for synthesizing new and currently unpredictable materials with exotic properties,” said Mercouri Kanatzidis, a chemistry professor at Northwestern with a joint appointment at Argonne.

Dec 20, 2022

A Target to Toxicity of Cancer Therapies

Posted by in category: biotech/medical

Many medical treatments have toxicities, sometimes called adverse events, which can complicate a patient’s treatment regimen. Treatment-related adverse events can range from mild symptoms, like transient fatigue or nausea, to severe and lethal occurrences, including cardiac toxicity.

Cardiac toxicity, which manifests as indications like acute myocardial infarction (MI), and angina pectoris (AP), can occur in cancer survivors, even several years following successful treatment. The onset of heart-related adverse events long after treatment is known as late cardiac toxicity, which can become a lethal complication of cancer therapies like radiation and chemotherapy.

Continue reading “A Target to Toxicity of Cancer Therapies” »

Dec 20, 2022

Artificial wombs: The coming era of motherless births?

Posted by in categories: biotech/medical, innovation

S cientifically, it’s called ectogenesis, a term coined by J.B.S. Haldane in 1924. A hugely influential science popularizer, Haldane did for his generation what Carl Sagan did later in the century. He got people thinking and talking about the implications of science and technology on our civilization, and did not shy away from inventing new words in order to do so. Describing ectogenesis as pregnancy occurring in an artificial environment, from fertilization to birth, Haldane predicted that by 2074 this would account for more than 70 percent of human births.

His prediction may yet be on target.

In discussing the idea in his work Daedalus –a reference to the inventor in Greek mythology who, through his inventions, strived to bring humans to the level of the gods–Haldane was diving into issues of his time, namely eugenics and the first widespread debates over contraception and population control.

Dec 20, 2022

Kent team creates material that can stop supersonic impacts

Posted by in categories: bioengineering, biological, physics, space

A Kent team, led by Professors Ben Goult and Jen Hiscock, has created and patented a ground-breaking new shock-absorbing material that could revolutionise both the defence and planetary science sectors.

This novel protein-based family of materials, named TSAM (Talin Shock Absorbing Materials), represents the first known example of a SynBio (or synthetic biology) material capable of absorbing supersonic projectile impacts. This opens the door for the development of next-generation bullet-proof armour and projectile capture materials to enable the study of hypervelocity impacts in space and the upper atmosphere (astrophysics).

Professor Ben Goult explained: Our work on the protein talin, which is the cells natural shock absorber, has shown that this molecule contains a series of binary switch domains which open under tension and refold again once tension drops. This response to force gives talin its molecular shock absorbing properties, protecting our cells from the effects of large force changes. When we polymerised talin into a TSAM, we found the shock absorbing properties of talin monomers imparted the material with incredible properties.’

Dec 20, 2022

These Immune Cells Can Shield the Brain & Prevent Cognitive Decline

Posted by in categories: biotech/medical, genetics, neuroscience

It was once thought that inflammation and immune responses in the brain were limited; that is was a so-called immune privileged organ. But there is increasing evidence to the contrary. New research has shown that immune cells called mucosal-associated invariant T cells (MAITs) can serve critical roles in the brain that reduce the levels of damaging reactive oxygen species, which prevents neuroinflammation, and protects learning and memory. The findings have been reported in Nature Immunology.

In this study, researchers genetically engineered mice so MAITs would no longer be produced. These mice were compared to a normal group and mice and while cognitive function was the same in both groups to start with, difference appeared as the mice approached middle age. The MAIT-deficient mice had difficulty forming new memories.

Dec 20, 2022

MIT Scientists Plan to Use Massive Laser to Attract Aliens to Earth

Posted by in category: alien life

Researchers from MIT want to use a massive, powerfull laser, shoot it into outer space in an attempt to attract aliens to Earth.

Dec 20, 2022

AI Art is NOT Theft

Posted by in categories: information science, robotics/AI

The term AI Art refers to artwork created by computers and algorithms. AI Art is not theft as it does not involve taking or copying someone else’s work without permission. AI Art is an entirely new form of creativity that involves the use of artificial intelligence to create unique and original works of art.

▼ Link(s) From Today’s Video:

Continue reading “AI Art is NOT Theft” »

Dec 20, 2022

A protective probiotic for ALS found

Posted by in category: biological

A probiotic bacterium called Lacticaseibacillus rhamnosus HA-114 prevents neurodegeneration in the C. elegans worm, an animal model used to study amyotrophic lateral sclerosis (ALS).

That’s the finding of a new study at Canada’s CHUM Research Center (CRCHUM) led by Université de Montréal neuroscience professor Alex Parker and published in the journal Communications Biology.

He and his team suggest that the disruption of lipid metabolism contributes to this cerebral degeneration, and show that the neuroprotection provided by HA-114, a non-commercial probiotic, is unique compared to other strains of the same bacterial family tested.

Dec 20, 2022

NASA Gives ICON $57 Million to Build a 3D Printer for Structures on the Moon

Posted by in categories: 3D printing, habitats, space travel

Austin, Texas-based 3D printing construction company ICON has gotten some pretty significant projects off the ground in recent years, from a 50-home development in Mexico to a 100-home neighborhood in Texas. This week the company won a NASA contract that will help it get an even bigger project much further off the ground—all the way to the moon, in fact.

The $57.2 million contract is intended to help ICON develop technologies for building infrastructure on the moon, like landing pads, houses, and roads. The goal is for ICON to build these lunar structures using local material—that is, moon houses built out of moon dust and moon rocks.

Dec 20, 2022

Hint of crack in standard model vanishes in LHC data

Posted by in category: particle physics

“My first impression is that the analysis is much more robust than before,” says Florencia Canelli, an experimental particle physicist at the University of Zurich in Switzerland who is a senior member of a separate LHC experiment. It has revealed how a number of surprising subtleties had conspired to produce an apparent anomaly, she says.

Renato Quagliani, an LHCb physicist at the Swiss Federal Polytechnic Institute (EPFL) in Lausanne, reported the results at CERN on 20 December, in a seminar that also attracted more than 700 viewers online. The LHCb collaboration also posted two preprints on the arXiv repository1,2.

LHCb first reported a tenuous discrepancy in the production of muons and electrons in 2014. When collisions of protons produced massive particles called B mesons, these quickly decayed. The most frequent decay pattern produced another type of meson, called a kaon, plus pairs of particles and their antiparticles — either an electron and a positron or a muon and an antimuon. The standard model predicted that the two types of pairs should occur with roughly the same frequency, but LHCb data suggested that the electron-positron pairs occurred more often.