Menu

Blog

Page 3518

Feb 1, 2023

Ultra-thin layers of rust generate electricity from flowing water

Posted by in categories: chemistry, solar power, sustainability

There are many ways to generate electricity—batteries, solar panels, wind turbines, and hydroelectric dams, to name a few examples… and now, there’s rust.

New research conducted by scientists at Caltech and Northwestern University shows that thin films of rust—iron oxide—can generate electricity when saltwater flows over them. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production.

Interactions between metal compounds and saltwater often generate electricity, but this is usually the result of a chemical reaction in which one or more compounds are converted to new compounds. Reactions like these are what is at work inside batteries.

Feb 1, 2023

The AI boom is here, and so are the lawsuits

Posted by in categories: futurism, robotics/AI

What can Napster tell us about the future?

Feb 1, 2023

Why I Am Spending Millions To Be 18 Again

Posted by in categories: biological, life extension, neuroscience

The man himself:


Blueprint is a public science experiment to determine whether it’s possible to stay the same biological age. This requires slowing down aging processes as much as possible and then reversing the aging that has happened. Currently my speed of aging is .76 (DunedinPACE). That means for every 365 days each year, I age 277 days. My goal is to remain the same age biologically for every 365 days that pass.

Continue reading “Why I Am Spending Millions To Be 18 Again” »

Feb 1, 2023

‘De-extinction’ company to bring back extinct dodo bird to life

Posted by in categories: biotech/medical, existential risks, genetics

Aunt_Spray/iStock.

“Having focused on genetic advancements in ancient DNA for my entire career and as the first to fully sequence the Dodo’s genome, I am thrilled to collaborate with Colossal and the people of Mauritius on the de-extinction and eventual re-wilding of the Dodo. I particularly look forward to furthering genetic rescue tools focused on birds and avian conservation,” Shapiro added.

Feb 1, 2023

‘Search unlikely to be uprooted

Posted by in category: robotics/AI

Alphabet is likely to hear competition questions surrounding OpenAI’s ChatGPT when Google’s parent company releases Q4 earnings results.

Feb 1, 2023

The World Is Amazed by the First Organic Modular Body

Posted by in categories: biotech/medical, materials

The world has witnessed many bizarre things, but seeing a biological body devoid of life become functional with the help of technology is a totally new tale. OSCAR, a living being formed from human cells, was born. Cornelis Vlasman is the protagonist, a talented biologist who believes that the path less trodden is, by definition, the least interesting. He creates his own laboratory with a few like-minded people, where he experiments with organic materials on his own initiative, with his own resources, and with his own crew.

After many years of hard labor, Vlasman’s team is successful in creating new life from cells collected from his own body. Under his guidance, OSCAR, the world’s first living organism, is being built. OSCAR is a human-sized prototype built with interactive organ modules created from human cells.

Continue reading “The World Is Amazed by the First Organic Modular Body” »

Feb 1, 2023

ChatGPT parent OpenAI faces a blockchain rival as a new NFT project creates 3D avatars from text

Posted by in categories: blockchains, robotics/AI

OpenAI, the creator of the language tool ChatGPT and image generator Dall-E, could be facing some new, three-dimensional competition on the blockchain.

Polygon is working with Alethea AI to launch CharacterGPT, an artificial-intelligence-powered non-fungible token (NFT) project that describes itself as “the world’s first multimodal AI system.”

Continue reading “ChatGPT parent OpenAI faces a blockchain rival as a new NFT project creates 3D avatars from text” »

Feb 1, 2023

Study: Superconductivity switches on and off in ‘magic-angle’ graphene

Posted by in categories: computing, neuroscience, particle physics

With some careful twisting and stacking, MIT physicists have revealed a new and exotic property in “magic-angle” graphene: superconductivity that can be turned on and off with an electric pulse, much like a light switch.

The discovery could lead to ultrafast, energy-efficient superconducting transistors for neuromorphic devices—electronics designed to operate in a way similar to the rapid on/off firing of neurons in the human brain.

Magic-angle graphene refers to a very particular stacking of graphene—an atom-thin material made from carbon atoms that are linked in a hexagonal pattern resembling chicken wire. When one sheet of graphene is stacked atop a second sheet at a precise “magic” angle, the twisted structure creates a slightly offset “moiré” pattern, or superlattice, that is able to support a host of surprising electronic behaviors.

Feb 1, 2023

Brian Greene — Did The Universe Emerge Inside a Black Hole?

Posted by in categories: cosmology, quantum physics

The big bang theory explains the beginning of our universe. But could the entirety of our universe be inside a black hole?
Theoretical physicist Brian Greene explains this bizarre hypothesis in cosmology.

The idea that our universe may be entirely contained within a black hole is a mind-bending concept that has been explored by physicists for decades.

Continue reading “Brian Greene — Did The Universe Emerge Inside a Black Hole?” »

Feb 1, 2023

New analog quantum computers to solve previously unsolvable problems

Posted by in categories: biotech/medical, quantum physics, supercomputing

Physicists have invented a new type of analog quantum computer that can tackle hard physics problems that the most powerful digital supercomputers cannot solve.

New research published in Nature Physics by collaborating scientists from Stanford University in the U.S. and University College Dublin (UCD) in Ireland has shown that a novel type of highly-specialized analog computer, whose circuits feature quantum components, can solve problems from the cutting edge of quantum physics that were previously beyond reach. When scaled up, such devices may be able to shed light on some of the most important unsolved problems in physics.

For example, scientists and engineers have long wanted to gain a better understanding of superconductivity, because existing —such as those used in MRI machines, and long-distance energy-efficient power networks—currently operate only at extremely low temperatures, limiting their wider use. The holy grail of materials science is to find materials that are superconducting at room temperature, which would revolutionize their use in a host of technologies.