Menu

Blog

Page 2650

Jul 19, 2023

Microsoft adds $154 billion in market value after it announces $30 per month AI subscription

Posted by in category: robotics/AI

No surprise. Already moving to make AI a subscription service like subscriptions to movie studios. But, i actually see it as a positive. 1. The Best AI service will have to put up or shut up and market will decide it; no more role play of who s the best. 2. Real customer service; no more, o you have a tec issue, sorry, get lost. 3. Funds and competition will force improvements.


Microsoft’s one-day gain in market value is more than the entire valuation of about 450 S&P 500 companies.

Jul 19, 2023

Scientists Have Determined How to Travel Back in Time With a Ring Wormhole

Posted by in categories: cosmology, time travel

Scientists claim they’ve calculated a potential new method of time travel involving a theoretical object called a ring wormhole.’ Here are the details.

Jul 19, 2023

Scientists use supercomputer to learn how cicada wings kill bacteria

Posted by in categories: biological, chemistry, engineering, nanotechnology, supercomputing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to development of new products with inherently antibacterial surfaces that are more effective than current chemical treatments.

When researchers at Stony Brook University’s Department of Materials Science and Chemical Engineering developed a simple technique to duplicate the cicada wing’s nanostructure, they were still missing a key piece of information: How do the nanopillars on its surface actually eliminate bacteria? Thankfully, they knew exactly who could help them find the answer: Jan-Michael Carrillo, a researcher with the Center for Nanophase Materials Sciences at the Department of Energy’s Oak Ridge National Laboratory.

For nanoscience researchers who seek computational comparisons and insights for their experiments, Carrillo provides a singular service: large-scale, high-resolution molecular dynamics (MD) simulations on the Summit supercomputer at the Oak Ridge Leadership Computing Facility at ORNL.

Jul 19, 2023

This Butterfly Is the First U.S. Insect to Be Wiped Out by Humans

Posted by in category: genetics

Genetic tests using museum specimens suggest that the Xerces blue was a distinct species and that it disappeared in 1941.

Jul 18, 2023

Safer painkillers: A novel drug treats pain without killing people

Posted by in category: biotech/medical

Painkillers have nasty side effects, such as organ damage or addiction. Researchers have discovered a new drug that may cause none of these.

Jul 18, 2023

Understanding Causes of Devastating Neurodegenerative Condition Affecting Children

Posted by in categories: biotech/medical, genetics, neuroscience

A common theme among parents and family members caring for a child with the rare Batten disease is “love, hope, cure.” While inspiring levels of love and hope are found among these amazing families, a cure has been more elusive. One reason is rooted in the need for more basic research. Although researchers have identified an altered gene underlying Batten disease, they’ve had difficulty pinpointing where and how the gene’s abnormal protein product malfunctions, especially in cells within the nervous system.

Now, this investment in more basic research has paid off. In a paper just published in the journal Nature Communications, an international research team pinpointed where and how a key cellular process breaks down in the nervous system to cause Batten disease, sometimes referred to as CLN3 disease [1]. While there’s still a long way to go in learning exactly how to overcome the cellular malfunction, the findings mark an important step forward toward developing targeted treatments for Batten disease and progress in the quest for a cure.

The research also offers yet another excellent example of how studying rare diseases helps to advance our fundamental understanding of human biology. It shows that helping those touched by Batten disease can shed a brighter light on basic cellular processes that drive other diseases, rare and common.

Jul 18, 2023

Study sheds light on mechanisms underlying H. pylori-induced gastric cancer

Posted by in categories: biotech/medical, chemistry

Helicobacter pylori (H. pylori) infections are commonly associated with abdominal pain, bloating, and acidity. Clinical evidence suggests that infection with H. pylori cagA+ strains dramatically increases the risk of developing gastric cancer.

A specialized protein delivered by H. pylori to the host, oncoprotein “CagA,” has been shown to interact with multiple host proteins and promote gastric carcinogenesis (transformation of normal cells to ). However, the underlying mechanisms associated with its biochemical activity have not been fully determined yet.

A new study published in Science Signaling on 18 July insights into the additional mechanism of oncogenic CagA action.

Jul 18, 2023

How Fatty Liver Disease Helps Cancer Thrive in the Liver

Posted by in category: biotech/medical

Extracellular vesicles in people with nonalcoholic fatty liver disease (NAFLD) encourage colorectal cancers to spread to the liver and prevent immune cells from attacking the metastatic tumors.

Jul 18, 2023

Protons set to power next-generation memory devices

Posted by in categories: materials, robotics/AI

A proton-driven approach that enables multiple ferroelectric phase transitions sets the stage for ultralow power, high-capacity computer chips.

A proton-mediated approach that produces multiple in could help develop high-performance memory devices, such as brain-inspired, or neuromorphic, computing chips, a KAUST-led international team has found. The paper is published in the journal Science Advances.

Ferroelectrics, such as indium selenide, are intrinsically polarized materials that switch polarity when placed in an , which makes them attractive for creating memory technologies. In addition to requiring low operating voltages, the resulting memory devices display excellent maximum read/write endurance and write speeds, but their storage capacity is low. This is because existing methods can only trigger a few ferroelectric phases, and capturing these phases is experimentally challenging, says Xin He, who co-led the study under the guidance of Fei Xue and Xixiang Zhang.

Jul 18, 2023

Shrinking Light: Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities

Posted by in categories: nanotechnology, quantum physics

Waveguiding scheme enables highly confined subnanometer optical fields.

Researchers have pioneered a novel method for confining light to subnanometer scales. This development offers promising potential for advancements in areas such as light-matter interactions and super-resolution nanoscopy.

Advancements in Light Confinement Technology.