Menu

Blog

Page 169

Dec 14, 2024

Berkeley laser pushes plasma acceleration to 10 GeV in 11.8 inches

Posted by in category: futurism

US scientists achieve a groundbreaking 10 GeV electron acceleration in just 30 cm using a novel dual-laser and supersonic gas jet system.

Dec 14, 2024

10,000 times faster than traditional methods: Computational framework discovers experimental designs in microscopy

Posted by in category: robotics/AI

For human researchers, it takes many years of work to discover new super-resolution microscopy techniques. The number of possible optical configurations of a microscope—for example, where to place mirrors or lenses—is enormous.

Researchers at the Max Planck Institute for the Science of Light (MPL) have developed an artificial intelligence (AI) framework which autonomously discovers new experimental designs in microscopy. The framework, called XLuminA, performs optimizations 10,000 times faster than well-established methods.

The researchers’ work is published in Nature Communications.

Dec 14, 2024

Unveiling the Universe’s Hidden Glow: Magnetic Shockwaves Illuminate the Cosmic Web

Posted by in category: space

Recent studies have successfully observed magnetic shockwaves in the cosmic web by examining radio emissions between galaxy clusters.

This achievement, confirmed by comparing polarized light patterns with advanced simulations, opens new avenues for understanding cosmic magnetic fields and their role in the Universe’s structure.

Understanding the Cosmic Web.

Dec 13, 2024

Surgeons Perform World’s First Robotic Double Lung Transplant

Posted by in categories: biotech/medical, health, robotics/AI

In a world’s first, surgeons from NYU Langone Health performed a successful fully roboitc double lung transplant.

Dec 13, 2024

Drug screening platform identifies compound for reinvigorating exhausted CAR-T cells

Posted by in categories: biotech/medical, innovation

A research team led by Prof. Wang Haoyi from the Institute of Zoology (IOZ) of the Chinese Academy of Sciences has developed a chimeric antigen receptor T (CAR-T) cell exhaustion model and a functional screening platform for identifying compounds that can rejuvenate exhausted T cells.

Using this innovative platform, the team identified the small-molecule compound miltefosine, which significantly enhances the tumor-killing activity of CAR-T cells. This study was published in Cell Reports Medicine on December 9.

T cell exhaustion is a differentiation state that arises when T cells are exposed to persistent antigen stimulation. This state is characterized by a progressive loss of effector functions, sustained expression of inhibitory receptors, impaired proliferation, and compromised mitochondrial respiration and glycolysis capacity.

Dec 13, 2024

Astronomers Just Found Possibly The Largest Rotating Structures in The Universe

Posted by in categories: computing, cosmology, neuroscience, quantum physics

Scientists have discovered that cosmic filaments, the largest known structures in the universe, are rotating. These massive, twisting filaments of dark matter and galaxies stretch across hundreds of millions of light-years and play a crucial role in channeling matter to galaxy clusters. The finding challenges existing theories, as it was previously believed that rotation could not occur on such large scales. The research was confirmed through both computer simulations and real-world data, and it opens up new questions about how these giant structures acquire their spin.

After reading the article, a Reddit user named Kane gained more than 100 upvotes with this comment: “What if galaxy clusters are like neuron and glial clusters in a brain. And dark matter is basically the equivalent of a synapse. It connects galaxies and matter together and is responsible for sending quantum information back and forth like a signal chain.”

Dec 13, 2024

The future of neuroscience could be wireless

Posted by in categories: biotech/medical, Elon Musk, neuroscience

Though Elon Musk’s Neuralink put wireless brain implants in the spotlight — in early 2024, Musk announced his company’s first implant was successful — the research and development of these devices has spanned decades. The BrainGate clinical trials have been underway for 20 years, and the consortium’s wireless implant marks the first time a person has used an implant with high bandwidth capabilities.

Wireless technologies are opening doors in neuroscience, enabling new capabilities in communication, treatment, and research. Because wireless implants can monitor the brain for long periods of time, they offer a unique opportunity to examine neural dynamics, increasing our understanding of the human mind. Their cord-free design also benefits people hoping to use these devices outside a research setting and improve their quality of life.

The first brain implant is credited to neurologist Phil Kennedy, who had the device surgically affixed to his brain. Today, wired implants are less invasive and widely used. They can help prevent seizures, manage OCD symptoms, and treat movement disorders.

Dec 13, 2024

Scientists Set Out to Capture a Black Hole — an Explosion Photobombed

Posted by in category: cosmology

When you stare for long enough into the heart of a galaxy to try to catch a glimpse of the black hole that lurks therein, that may not be all you catch.

When a huge collaboration directed telescopes around the world to the heart of galaxy M87 in 2018 in an ultimately successful effort to capture detail of its supermassive black hole, they also managed to observe some of the wild shenanigans such a black hole engages in.

Now, astronomers discovered that one of those shenanigans was a colossal belch – a gamma-ray eruption from one of the powerful jets of plasma launched from the black hole’s poles as it feeds.

Dec 13, 2024

‘AI-at-scale’ method accelerates atomistic simulations for scientists

Posted by in categories: quantum physics, robotics/AI, supercomputing

Quantum calculations of molecular systems often require extraordinary amounts of computing power; these calculations are typically performed on the world’s largest supercomputers to better understand real-world products such as batteries and semiconductors.

Now, UC Berkeley and Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have developed a new machine learning method that significantly speeds up by improving model scalability. This approach reduces the computing memory required for simulations by more than fivefold compared to existing models and delivers results over ten times faster.

Their research has been accepted at Neural Information Processing Systems (NeurIPS) 2024, a conference and publication venue in artificial intelligence and machine learning. They will present their work at the conference on December 13, and a version of their paper is available on the arXiv preprint server.

Dec 13, 2024

Scientists Discover Genetic Key to Reducing Sugar Cravings

Posted by in categories: biotech/medical, genetics

The study offers new genetic insights into dietary preferences and suggests the potential to target SI as a means to selectively decrease sucrose consumption on a population scale.

The study was led by Dr. Peter Aldiss, now a group leader in the School of Medicine at the University of Nottingham, alongside Assistant Professor Mette K Andersen, at the Novo Nordisk Foundation Centre for Basic Metabolic Research in Copenhagen and Professor Mauro D’Amato at CIC bioGUNE in Spain and LUM University in Italy. It also involves scientists internationally from Copenhagen, Greenland, Italy, and Spain as part of the ‘Sucrase-isomaltase working group’

Page 169 of 12,344First166167168169170171172173Last