Menu

Blog

Page 10879

Jun 21, 2016

China’s pioneering quantum satellite launch slips to August

Posted by in categories: quantum physics, satellites

Oh no; China has slipped by a month.


Launch of the world’s first quantum communications satellite will take place in August, the leader of China’s space science program has said.

Dr Wu Ji of the National Space Science Centre (NSSC) under the Chinese Academy of Sciences (CAS), told reporters in Beijing while updating on space science missions (link in Chinese).

Continue reading “China’s pioneering quantum satellite launch slips to August” »

Jun 21, 2016

Structure-mapping engine enables computers to reason and learn like humans, including solving moral dilemmas

Posted by in categories: computing, ethics, neuroscience

Northwestern University’s Ken Forbus is closing the gap between humans and machines.

Using cognitive science theories, Forbus and his collaborators have developed a model that could give computers the ability to reason more like humans and even make moral decisions. Called the structure-mapping engine (SME), the new model is capable of analogical problem solving, including capturing the way humans spontaneously use analogies between situations to solve .

“In terms of thinking like humans, analogies are where it’s at,” said Forbus, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern’s McCormick School of Engineering. “Humans use relational statements fluidly to describe things, solve problems, indicate causality, and weigh moral dilemmas.”

Continue reading “Structure-mapping engine enables computers to reason and learn like humans, including solving moral dilemmas” »

Jun 21, 2016

A Promising Anti-Aging Drug Will Soon Be Tried On Humans

Posted by in categories: biotech/medical, health, life extension

Washington University in St. Louis and Keio University in Japan is set to test the effectiveness and safety of the compound. Starting next month, about 10 healthy people will be administered NMN to see if can improve bodily function and stave off the effects of aging. Should it work, it would become the first bona fide anti-aging intervention available on the market.


A compound called nicotinamide mono nucleotide (NMN) has been shown to slow down the aging process and extend the lifespans of mice. We’re about to find out if it does the same thing to humans.

A planned clinical trial devised by researchers from Washington University in St. Louis and Keio University in Japan is set to test the effectiveness and safety of the compound. Starting next month, about 10 healthy people will be administered NMN to see if can improve bodily function and stave off the effects of aging. Should it work, it would become the first bona fide anti-aging intervention available on the market.

Continue reading “A Promising Anti-Aging Drug Will Soon Be Tried On Humans” »

Jun 21, 2016

Quantum calculations broaden the understanding of crystal catalysts

Posted by in categories: chemistry, particle physics, quantum physics, supercomputing

Using numerical modelling, researchers from Russia, the US, and China have discovered previously unknown features of rutile TiO2, which is a promising photocatalyst. The calculations were performed at an MIPT laboratory on the supercomputer Rurik. A paper detailing the results has been published in the journal Physical Chemistry Chemical Physics.

It’s all on the surface

Special substances called catalysts are needed to accelerate or induce certain chemical reactions. Titanium dioxide (TiO2) is a good photocatalyst—when exposed to light, it effectively breaks down water molecules as well as hazardous organic contaminants. TiO2 is naturally found in the form of rutile and other minerals. One of the two most active surfaces of rutile R-TiO2 is a surface that is denoted as (011). The photocatalytic activity is linked to the way in which oxygen and titanium atoms are arranged on the surface. This is why it is important to understand which forms the surface of rutile can take.

Read more

Jun 21, 2016

Measuring Planck’s constant, NIST’s watt balance brings world closer to new kilogram

Posted by in categories: information science, particle physics, quantum physics

A high-tech version of an old-fashioned balance scale at the National Institute of Standards and Technology (NIST) has just brought scientists a critical step closer toward a new and improved definition of the kilogram. The scale, called the NIST-4 watt balance, has conducted its first measurement of a fundamental physical quantity called Planck’s constant to within 34 parts per billion — demonstrating the scale is accurate enough to assist the international community with the redefinition of the kilogram, an event slated for 2018.

The redefinition-which is not intended to alter the value of the kilogram’s mass, but rather to define it in terms of unchanging fundamental constants of nature-will have little noticeable effect on everyday life. But it will remove a nagging uncertainty in the official kilogram’s mass, owing to its potential to change slightly in value over time, such as when someone touches the metal artifact that currently defines it.

Planck’s constant lies at the heart of quantum mechanics, the theory that is used to describe physics at the scale of the atom and smaller. Quantum mechanics began in 1900 when Max Planck described how objects radiate energy in tiny packets known as “quanta.” The amount of energy is proportional to a very small quantity called h, known as Planck’s constant, which subsequently shows up in almost all equations in quantum mechanics. The value of h — according to NIST’s new measurement — is 6.62606983×10−34 kg?m2/s, with an uncertainty of plus or minus 22 in the last two digits.

Read more

Jun 21, 2016

Using Enzymes to Enhance LEDs

Posted by in categories: computing, engineering, particle physics, quantum physics, solar power, sustainability

Robert Dunleavy had just started his sophomore year at Lehigh University when he decided he wanted to take part in a research project. He sent an email to Bryan Berger, an assistant professor of chemical and biomolecular engineering, who invited Dunleavy to his lab.

Berger and his colleagues were conducting experiments on tiny semiconductor particles called quantum dots. The optical and electronic properties of QDs make them useful in lasers, light-emitting diodes (LEDs), medical imaging, solar cells, and other applications.

Dunleavy joined Berger’s group and began working with cadmium sulfide (CdS), one of the compounds from which QDs are fabricated. The group’s goal was to find a better way of producing CdS quantum dots, which are currently made with toxic chemicals in an expensive process that requires high pressure and temperature.

Continue reading “Using Enzymes to Enhance LEDs” »

Jun 21, 2016

DARPA Launches Program to Help Data Science Through Automated Empirical Modeling

Posted by in categories: robotics/AI, science

The Defense Advanced Research Projects Agency has launched its Data-Driven Discovery of Models program that aims to automate aspects of data science to help non-experts construct their own empirical models.

DARPA said Friday D3M looks to address a data science expertise gap the agency says is reflected by lack of results for predictive questions among popular search engines.

“The construction of empirical models today is largely a manual process, requiring data experts to translate stochastic elements, such as weather and traffic, into models that engineers and scientists can then ask questions of,” said Wade Shen, a DARPA program manager in the information innovation office.

Continue reading “DARPA Launches Program to Help Data Science Through Automated Empirical Modeling” »

Jun 21, 2016

Why a major newspaper publisher renamed itself “Tronc” and released a silly video

Posted by in category: futurism

Tronc’s mockable, buzzword-laden video actually makes an important point.

Read more

Jun 21, 2016

Particles That Tunnel Together, Stay Together

Posted by in categories: particle physics, quantum physics

This is excellent; being able to ensuring that 2 particles can act as 1 molecule through tunneling.


Researchers have theoretically shown that in certain conditions, two particles will begin to act as if they are one molecule and undergo quantum tunneling together.

Read more

Jun 21, 2016

Techshot accomplishes 3D bioprinting in zero gravity

Posted by in categories: 3D printing, biotech/medical, space travel

NASA contractor Techshot have become the first to 3D print a heart structure in zero gravity using human stem cells. Together with 3D bioprinter developers nScrypt and bio-ink specialists Bioficial Organs they have successfully printed cardiac and vascular structures, and believe this could further 3D bioprinting efforts on solid ground.

Techshot have been developing technologies for NASA, SpaceX and other partners for more than 25 years. They have tech aboard the International Space Station among other places, and are also known for combining their aerospace specialism with the medical sector, having built the Bone Densitometer zero-gravity X ray machine.

NScrypt are responsible for building the world’s first 3D bioprinter back in 2003, and have been working on micro-dispensing and 3D printing systems for years. Also in the team was Bioficial Organs, which has grown out of the Cardiovascular Innovation Institute in Louisville, Kentucky, and specializes in organ 3D printing innovations.

Read more