Menu

Blog

Page 10872

Sep 12, 2016

Nano-sized metal fish deliver targeted drugs to your body

Posted by in categories: biotech/medical, nanotechnology

Doctors have long dreamed of delivering drugs to specific parts of your body, and they may soon have a clever way to do it: fish. UC San Diego researchers have developed nanoscale metallic fish (they’re just 800 nanometers long) that could carry medicine into the deeper reaches of your bloodstream. Each critter has a gold head and tailfin, as well as a nickel body joined by silver hinges. You only have to subject them to an oscillating magnetic field to make them swim — there’s no need for propellers or a passive (read: slow) delivery system. That, in turn, could make the drug carriers smaller even as they move quickly.

The technology definitely has its flaws. It’s not currently biodegradable, so you may be stuck with this school of fish unless there’s a way to flush them out. Gold and silver aren’t the cheapest metals, either. Scientists are working on biodegradability, however, and they’re hopeful that it will be useful for more than just guiding drugs. You could use to control individual cells, for example, or conduct certain forms of non-invasive surgery. It may just be a matter of refining the technique before you can get medicine exactly where you need it.

Continue reading “Nano-sized metal fish deliver targeted drugs to your body” »

Sep 12, 2016

Crocus Technology Introduces a Nano-Power TMR Digital Switch

Posted by in categories: computing, nanotechnology, wearables

Nice.


Crocus Technology, a leading developer of Tunneling Magnetoresistive Sensors (TMR) based on proprietary and patented Magnetic Logic Unit (MLU) technology, announces the availability of the CT51x digital switch, the first in a series of fully integrated digital sensors the company has launched. This family of devices accommodates a wide range of applications with larger air gaps, smaller magnetic fields, and significantly lower power consumption. The CT51x enables high-accuracy position detection, control and power switching functions with high sensitivity and reliability that system designers demand for the IoT, consumer and industrial applications.

“With ever increasing demand for intelligent sensing in smart products, the CT51x family of devices offers design-in flexibility and cost-savings for existing and emerging applications: IoT, wearables, appliances, smart meters, intelligent smart locks and other consumer products,” said Zack Deiri, Chief Sales and Marketing Officer at Crocus Technology. “The market is gravitating towards intelligent solid-state magnetic switches that provide higher reliability, faster frequency response, and extremely low power consumption for battery-powered applications in a smaller form factor, such as the CT51x.”

Continue reading “Crocus Technology Introduces a Nano-Power TMR Digital Switch” »

Sep 12, 2016

Indian Scientists Recycle FIsh Bio-Waste Into Green Energy

Posted by in categories: biotech/medical, sustainability

A team of researchers at Jadavpur University here has developed a biodegradable energy harvester from raw fish scales that could in future replace pacemaker devices for the heart.

The energy harvester thus could be tapped as a sustainable green power source for next generation self-powered implantable medical devices.

It also has the potential for personal portable electronics with reduced e-waste elements said the researchers.

Continue reading “Indian Scientists Recycle FIsh Bio-Waste Into Green Energy” »

Sep 12, 2016

Monkey Types 12 Words per Minute With Brain-to-Keyboard Communication

Posted by in categories: biotech/medical, computing, neuroscience

Finally, your pet can go to work for you.


The brain-computer interface is already being tested in humans with Lou Gehrig’s disease.

Continue reading “Monkey Types 12 Words per Minute With Brain-to-Keyboard Communication” »

Sep 12, 2016

Toward Unbreakable Quantum Encryption for Everyone

Posted by in categories: cybercrime/malcode, encryption, government, military, quantum physics

China hasn’t kept it a secret for many months now about the Chinese government desire to have an unbreakable quantum communication networks which is why they launched their Quantum Satellite (the QSS program) last month. What the real story is how QSS is enabling the military to have a leading edge through technologies such as the Quantum Radar capabilities, or using Quantum communications to prevent hacking of their systems while having the ability to hack others. And, this is what has actually been published publically to boot.


Hacked recently covered the efforts of the Chinese government to build unbreakable quantum communication networks. According to analysts, quantum communications networks are so expensive that they could have a “recentralizing effect,” enabling states to recover the ground that they have lost to decentralizing digital technologies. But what if ultra-secure quantum cryptography could be made available to everyone at low cost?

European researchers at the Institute of Photonic Sciences (ICFO), Institució Catalana de Recerca (ICREA), and other research labs, have developed a fast random number generator based on a quantum mechanical process that could deliver the world’s most secure encryption keys in a package tiny enough to use in a mobile device.

Continue reading “Toward Unbreakable Quantum Encryption for Everyone” »

Sep 12, 2016

Viewpoint: Mapping Out the State of a Quantum System

Posted by in categories: mathematics, quantum physics

Researchers have developed a new technique to measure the density matrix—a more general way of characterizing the state of a quantum system than that provided by the wave function.

The wave function is the physicist’s usual choice to characterize the state of a quantum system. But a different mathematical object, called a density matrix, is required for systems that are in mixed states, which are a mixture of other, pure quantum states. An example of a pure state is a beam of horizontally or vertically polarized photons, whereas a mixed state would be an uncorrelated statistical mixture of both polarizations. A mixed state would also apply to a system quantum mechanically entangled with its environment. The density matrix provides a complete description of a mixed state, but it also applies to pure states. Usually, experimental measurements of density matrices are indirect reconstructions using data acquired from a series of different kinds of measurements.

Read more

Sep 12, 2016

DARPA Launches Contest to Make AI-powered Military Radios that are Really Smart

Posted by in categories: military, robotics/AI

Got to love this stuff.


Teams that join this DARPA program, the “Spectrum Collaboration Challenge (SC2),” will have to demonstrate new technologies that represent a “paradigm shift” with both military and commercial applications.

“The real crux of the problem is — when you look at users of the spectrum, whether they are commercial users of the spectrum, whether they’re consumers or they’re the military — the thing that is ubiquitously true is we all are placing more and more and more demand on the spectrum. And all of that demand is really adding up and going to stress the way that we actually manage the spectrum,” said Paul Tilghman, program manager.

Continue reading “DARPA Launches Contest to Make AI-powered Military Radios that are Really Smart” »

Sep 12, 2016

Setting a Safe Course for Gene Editing Research

Posted by in categories: bioengineering, biotech/medical, genetics, military

This is actually pretty significant to see from DARPA; however, not a total shock given the importance of Synthetic Biology and various parties in the military understanding how CRISPR can be used as a weapon.


A new DARPA program could help unlock the potential of advanced gene editing technologies by developing a set of tools to address potential risks of this rapidly advancing field. The Safe Genes program envisions addressing key safety gaps by using those tools to restrict or reverse the propagation of engineered genetic constructs.

“Gene editing holds incredible promise to advance the biological sciences, but right now responsible actors are constrained by the number of unknowns and a lack of controls,” said Renee Wegrzyn, DARPA program manager. “DARPA wants to develop controls for gene editing and derivative technologies to support responsible research and defend against irresponsible actors who might intentionally or accidentally release modified organisms.”

Continue reading “Setting a Safe Course for Gene Editing Research” »

Sep 12, 2016

One-pot synthesis towards sulfur-based organic semiconductors

Posted by in category: materials

Advancing efforts around Synthetic Bio into the semiconductor space.

“We hope that ongoing advances in our method may lead to the development of new organic electronic devices, including semiconductor and luminescent materials,” say Segawa and Itam.


Thiophene-fused polycyclic aromatic hydrocarbons (PAHs) are known to be useful as organic semiconductors due to their high charge transport properties. Scientists have developed a short route to form various thiophene-fused PAHs by simply heating mono-functionalized PAHs with sulfur. This new method is expected to contribute towards the efficient development of novel thiophene-based electronic materials.

Read more

Sep 12, 2016

Metal to insulator transition understood

Posted by in categories: energy, physics

Physicists have for the first time succeeded in directly visualising on small scales how a material abruptly changes its state from conducting to insulating at low temperatures. Researchers Erik van Heumen of the University of Amsterdam and Alex McLeod from the University of California thereby provide evidence for a 60-year-old theory that explains this phenomenon and pave the way for more energy efficient technologies. The team’s experiments are described in the latest edition of Nature Physics.

Materials that conduct electricity at high temperature but are insulating at lower temperatures have been known for decades. However, until recently it was not possible to directly measure how such phase transitions proceed on small length scales. Using a new technique, Van Heumen and McLeod are now able to visualise the changes taking place in the material during such a phase transition on the nanometer scale.

In their experiments, the team observed a so-called percolation transition taking place among the electrons in the material. Above a certain critical temperature, the electrons can move relatively easily through the material enabling the flow of electrical current. When the temperature drops below a threshold temperature, small imperfections in the material trigger a kind of traffic jam for the electrons. Starting from small nanometer length scales, this traffic jam slowly grows outwards across the entire material. The previously freely moving electrons come to an abrupt halt and the material loses its conducting properties.

Read more