Menu

Blog

Page 10709

Nov 22, 2016

A synthetic biological metabolic pathway fixes CO2 more efficiently than plants

Posted by in categories: biological, climatology, food, sustainability

In future, greenhouse gas carbon dioxide could be removed from the atmosphere by deploying a new biological method. A team headed by Tobias Erb, Leader of a Research Group at the Max Planck Institute for Terrestrial Microbiology in Marburg, has developed a synthetic but completely biological metabolic pathway based on the model of photosynthesis that fixes carbon dioxide from the atmosphere 20% more efficiently that plants can photosynthetically. The researchers initially planned the new system, which they presented in the magazine Science this week, on the drawing board and then turned it into reality in the laboratory.

Climate change is one of the most pressing challenges of our time. The concentration of (CO2) in the atmosphere owing to human activities has continually risen since the start of the Industrial Revolution. All scientific evidence indicates that this increase is exacerbating the greenhouse effect and changing the climate. The consequences are already clearly evident. To overcome the environmental as well as the social challenge of climate change, “we must find new ways of sustainably removing excessive CO2 from the atmosphere and turning it into something useful,” underlined Erb, who leads a Junior Research Group at the Max Planck Institute in Marburg.

Continue reading “A synthetic biological metabolic pathway fixes CO2 more efficiently than plants” »

Nov 22, 2016

Researchers Just Solved One of the Biggest Problems in Synthetic Biology

Posted by in categories: bioengineering, biological, genetics

In Brief

  • Researchers have discovered that placing synthetic genetic circuits in liposomes prevents them from interfering with one another, while still allowing them to communicate.
  • Not only could this new form of “modular” genetic circuits lead to more complex engineered circuits, it could also provide insight as to how the earliest life on Earth formed.

By applying engineering principles to biology, researchers can create biological systems that don’t exist naturally. A problem of synthetic biology, however, is that these engineered genetic circuits can interfere with each other. While beneficial on their own, some of these man-made circuits become useless when they come in contact with each other, and this bars them from being used to solve complex biological problems.

Continue reading “Researchers Just Solved One of the Biggest Problems in Synthetic Biology” »

Nov 22, 2016

Researchers send text messages using everyday chemicals, eye medical applications

Posted by in category: biotech/medical

Researchers at Stanford University have demonstrated that it’s possible to send text messages using nothing more than an Arduino and household chemicals.

Read more

Nov 22, 2016

America Is Unprepared for The Bioterror Threat Of Gene Editing

Posted by in categories: bioengineering, biotech/medical

An Obama advisory group warns that advances in gene engineering have outpaced our ability to contain them.

Read more

Nov 22, 2016

What are Molecular Machines?

Posted by in categories: economics, evolution, food, information science, internet, nanotechnology, robotics/AI

Machines lace almost all social, political cultural and economic issues currently being discussed. Why, you ask? Clearly, because we live in a world that has all its modern economies and demographic trends pivoting around machines and factories at all scales.

We have reached the stage in the evolution of our civilization where we cannot fathom a day without the presence of machines or automated processes. Machines are not only used in sectors of manufacturing or agriculture but also in basic applications like healthcare, electronics and other areas of research. Although, machines of varying types had entered the industrial landscape long ago, technologies like nanotechnology, the Internet of Things, Big Data have altered the scenario in an unprecedented manner.

The fusion of nanotechnology with conventional mechanical concepts gives rise to the perception of ‘molecular machines’. Foreseen to be a stepping stone into nano-sized industrial revolution, these microscopic machines are molecules designed with movable parts that behave in a way that our regular machines operate in. A nano-scale motor that spins in a given direction in presence of directed heat and light would be an example of a molecular machine.

Read more

Nov 22, 2016

Single photon converter: key component of quantum internet

Posted by in categories: computing, internet, quantum physics

A Polish-British team of physicists has constructed and tested a compact, efficient converter capable of modifying the quantum properties of individual photons. The new device should facilitate the construction of complex quantum computers, and in the future may become an important element in global quantum networks, the successors of today’s Internet.

Quantum internet and hybrid quantum computers, built out of subsystems that operate by means of various physical phenomena, are now becoming more than just the stuff of imagination. In an article just published in the journal Nature Photonics, physicists from the University of Warsaw’s Faculty of Physics (FUW) and the University of Oxford have unveiled a key element of such systems: an electro-optical device that enables the properties of individual photons to be modified. Unlike existing laboratory constructions, this new device works with previously unattainable efficiency and is at the same time stable, reliable, and compact.

Building an efficient device for modifying the quantum state of individual photons was an exceptionally challenging task, given the fundamental differences between classical and quantum computing.

Read more

Nov 22, 2016

SpaceX wants to launch 4,425 satellites into space to bring super-fast internet to the world

Posted by in categories: Elon Musk, internet, satellites

Free Satellite WiFi


Elon Musk’s SpaceX wants to launch thousands of satellites into space with the aim of providing super-fast global internet coverage, according to a regulatory filing.

SpaceX – the company on a mission to colonize Mars – outlined plans to put 4,425 satellites into space in a Federal Communications Commission (FCC) filing from earlier this week.

Continue reading “SpaceX wants to launch 4,425 satellites into space to bring super-fast internet to the world” »

Nov 22, 2016

BGRF scientists publish seminal paper and announce project to develop biomarkers of aging

Posted by in categories: biotech/medical, information science, life extension, robotics/AI

New biomarkers for aging is good news for researchers!


“Given the high volume of data being generated in the life sciences, there is a huge need for tools that make sense of that data. As such, this new method will have widespread applications in unraveling the molecular basis of age-related diseases and in revealing biomarkers that can be used in research and in clinical settings. In addition, tools that help reduce the complexity of biology and identify important players in disease processes are vital not only to better understand the underlying mechanisms of age-related disease but also to facilitate a personalized medicine approach. The future of medicine is in targeting diseases in a more specific and personalized fashion to improve clinical outcomes, and tools like iPANDA are essential for this emerging paradigm,” said João Pedro de Magalhães, PhD, a trustee of the Biogerontology Research Foundation.

The algorithm, iPANDA, applies deep learning algorithms to complex gene expression data sets and signal pathway activation data for the purposes of analysis and integration, and their proof of concept article demonstrates that the system is capable of significantly reducing noise and dimensionality of transcriptomic data sets and of identifying patient-specific pathway signatures associated with breast cancer patients that characterize their response to Toxicol-based neoadjuvant therapy.

Continue reading “BGRF scientists publish seminal paper and announce project to develop biomarkers of aging” »

Nov 22, 2016

Turning back the aging clock

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

SENS makes official comment on the excellent news about Mitochondrial repair from UCLA and Caltech.


So the big news is progress has been made on Mitochondrial repair. Our resident expert at the SENS Research Foundation, Dr. Matthew O’Connor of the MitoSENS project had this to say about the exciting news:

“New work from UCLA and Caltech has shown that a genetic pathway can be harnessed to selectively remove mutant mitochondria from the muscles of fruit flies. This work from Kandul et al is exciting because it raises the possibility of someday finding a way to control this genetic pathway in such a way to selectively delete mutant mitochondria. Further they did it in live flies in a tissue (muscle) where we are especially concerned about the impact of mitochondrial DNA mutations. Our ability to selectively control genetic pathways in non-genetically engineered animals (such as humans) is, however, extremely limited so it may be a long time before any clinical benefits can be realized from this research.” — Dr. Matthew O’Connor SRF

Continue reading “Turning back the aging clock” »

Nov 22, 2016

Proof Of Stake — By Fred Wilson | AVC

Posted by in categories: bitcoin, cryptocurrencies

unknown

“One of the most interesting questions to me is whether we can figure out how to implement a proof of stake consensus mechanism in a large decentralized trustless public blockchain (ie Bitcoin, Ethereum, etc).”

Read more