Menu

Blog

Archive for the ‘solar power’ category: Page 110

Sep 4, 2018

Scientists pioneer a new way to turn sunlight into fuel

Posted by in categories: biological, solar power, sustainability

The quest to find new ways to harness solar power has taken a step forward after researchers successfully split water into hydrogen and oxygen by altering the photosynthetic machinery in plants.

Photosynthesis is the process plants use to convert sunlight into . Oxygen is produced as by-product of when the water absorbed by plants is ‘split’. It is one of the most important reactions on the planet because it is the source of nearly all of the world’s oxygen. Hydrogen which is produced when the water is split could potentially be a green and unlimited source of .

A new study, led by academics at St John’s College, University of Cambridge, used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies.

Read more

Sep 1, 2018

Mars Opportunity rover will have 45 days to phone home

Posted by in categories: solar power, space, sustainability

As a planet-wide dust storm enveloped Mars, many were concerned about the fate of the Opportunity rover. After all, Opportunity is dependent on solar panels; the opacity of the dust storm meant that she wasn’t getting enough light to stay powered. The team at NASA’s Jet Propulsion Laboratory last heard from Opportunity on June 10th. Now, the storm is lifting, and once its opacity reaches a tau level of 1.5, the little rover will have 45 days to respond to the team’s signals. Otherwise, NASA will stop actively listening for the rover.

The tau measures the amount of dust and particulate in the Martian atmosphere. The team hopes that, once the skies have cleared enough and the rover has recharged its batteries, Opportunity will be able to hear and respond to the signals that Earth is sending its way. If 45 days have passed without a response, the team will cease its active efforts to recover the rover. “If we do not hear back after 45 days, the team will be forced to conclude that the Sun-blocking dust and the Martian cold have conspired to cause some type of fault from which the rover will more than likely not recover,” said John Callas, Opportunity’s project manager, in a statement.

That doesn’t mean NASA will have fully given up on Opportunity, though. After all, the rover was originally tasked with a 90-day mission and is still working almost 15 years later. The team will continue “passive listening efforts” — presumably stop sending the rover active signals through the Deep Space Network, but monitor in case Opportunity reaches out first — for an additional several months.

Continue reading “Mars Opportunity rover will have 45 days to phone home” »

Aug 29, 2018

100,000 homes in Germany now have battery-storage systems connected to the grid

Posted by in categories: habitats, solar power, sustainability

Germany helped make solar power cheap. As of June this year, it boasts 1 million homes that have installed rooftop solar panels. That means the country produces a lot of renewable energy—sometimes more than it can use.

At such times, German grid operators have had to pay neighboring countries or grids to use the excess electricity. Since the beginning of this year, German grids have accumulated 194 hours (paywall) with negative power prices.

Now Germany is turning to energy storage as a solution to the problem of excess electricity. On Aug. 28, an energy ministry official attended the commissioning (link in German) of the 100,000th home to install a battery-storage system that’s connected to the grid.

Continue reading “100,000 homes in Germany now have battery-storage systems connected to the grid” »

Aug 29, 2018

Here’s How Badly Air Pollution Is Choking Solar Energy

Posted by in categories: solar power, sustainability

New research finds that severe air pollution can eliminate all profits from solar panel installations.

Read more

Aug 25, 2018

Solar-powered quadcopter drone takes flight

Posted by in categories: drones, engineering, solar power, sustainability

A university in Singapore has conducted one of the first practical flights of a solar-powered quadcopter drone.

The prototype has flown as high as 10 meters (about 33 feet) in test flights using solar power with no battery or other energy storage on board, according to the National University of Singapore (NUS), which announced that an engineering team had conducted the test flight.

“Rotary winged aircraft are significantly less efficient at generating lift compared to their fixed wing counterparts [so] a viable 100 per cent solar rotary aircraft that can take-off and land vertically remains a major engineering challenge to date,” the university said in a statement.

Continue reading “Solar-powered quadcopter drone takes flight” »

Aug 21, 2018

Supersized solar farms are sprouting around the world (and maybe in space, too)

Posted by in categories: solar power, space, sustainability

In a quest to cut the cost of clean electricity, power utilities around the world are supersizing their solar farms.

Nowhere is that more apparent than in southern Egypt, where what will be the world’s largest solar farm — a vast collection of more than 5 million photovoltaic panels — is now taking shape. When it’s completed next year, the $4 billion Benban solar park near Aswan will cover an area 10 times bigger than New York’s Central Park and generate up to 1.8 gigawatts of electricity.

Continue reading “Supersized solar farms are sprouting around the world (and maybe in space, too)” »

Aug 19, 2018

Renewable resort: Greek island to run on wind, solar power

Posted by in categories: solar power, sustainability

The innovative 800-kilowatt wind turbine is an effort to protect the environment and attract tourism.


TILOS, Greece (AP) — When the blades of its 800-kilowatt wind turbine start turning, the small Greek island of Tilos will become the first in the Mediterranean to run exclusively on wind and solar power.

The sea horse-shaped Greek island between Rhodes and Kos has a winter population of 400. But that swells to as many as 3,000 people in the summer, putting an impossible strain on its dilapidated power supply.

This summer, technicians are conducting the final tests on a renewable replacement system that will be fully rolled out later this year. It will allow Tilos to run exclusively on high-tech batteries recharged by a wind turbine and a solar park.

Continue reading “Renewable resort: Greek island to run on wind, solar power” »

Aug 18, 2018

High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes

Posted by in categories: solar power, sustainability

Realizing industrial-scale, large-area photovoltaic modules without any considerable performance losses compared with the performance of laboratory-scale, small-area perovskite solar cells (PSCs) has been a challenge for practical applications of PSCs. Highly sophisticated patterning processes for achieving series connections, typically fabricated using printing or laser-scribing techniques, cause unexpected efficiency drops and require complicated manufacturing processes. We successfully fabricated high-efficiency, large-area PSC modules using a new electrochemical patterning process. The intrinsic ion-conducting features of perovskites enabled us to create metal-filamentary nanoelectrodes to facilitate the monolithic serial interconnections of PSC modules. By fabricating planar-type PSC modules through low-temperature annealing and all-solution processing, we demonstrated a notably high module efficiency of 14.0% for a total area of 9.06 cm with a high geometric fill factor of 94.1%.

The unprecedented features of organic-inorganic hybrid perovskite semiconductors, which allow low-temperature crystal film growth from their precursor solutions, have greatly promoted both scientific and technological revolutions in a wide range of fields within electronics (1, 2). The advent of organolead trihalide perovskite semiconductors as light harvesters has resulted in the fastest-advancing solar technology to date, with an extremely rapid rise in power conversion efficiency (PCE) from 3.8 to 22.1% over just a few years (3–6). In addition to recent remarkable breakthroughs in addressing the instability of these devices, which has been considered the greatest challenge toward commercialization due to their intrinsic properties vulnerable to oxygen and moisture, pioneering researchers have begun fabricating large-area devices for their ultimate application (7–16).

Read more

Aug 15, 2018

State-of-the-art solar panel recycling plant

Posted by in categories: bioengineering, life extension, solar power, sustainability

The German engineering company Geltz Umwelt-Technologie has successfully developed an advanced recycling plant for obsolete or ageing solar panels.

As sales of solar power increase, there is a looming problem that is quite often overlooked: disposing waste from outdated or destroyed . A surge in solar panel disposal is expected to take place in the early 2030s, given the design life of installed around the millennium.

To address this problem before this big disposal wave, the EU has funded the ELSi project. With strong competencies in plant manufacturing and wastewater treatment including , the Geltz Umwelt-Technologie firm has built a test and treatment facility at a large disposal firm to retrieve reusable materials from solar modules.

Continue reading “State-of-the-art solar panel recycling plant” »

Aug 9, 2018

Made in Space believes its on-orbit manufactured power supply can save militaries money

Posted by in categories: economics, satellites, solar power, sustainability

By allowing them to launch higher-power small satellites on smaller rockets, as opposed to the larger, and more expensive rockets that current technology requires.

Made in Space is developing power systems for small satellites that can provide up to 5 kW of solar power and is enabled by the company’s Archinaut on-orbit manufacturing and assembly technology. Current small satellites are typically constrained to 1 kW of power or less.

Made in Space CEO Andrew Rush pictured next to a subscale version of a solar array that the company can produce in space. The golden Mylar pieces are physical mockups of what would be solar blankets. This solar array is over 3 m tall. (Made in Space) Made in Space CEO Andrew Rush pictured next to a subscale version of a solar array that the company can produce in space. The golden Mylar pieces are physical mockups of what would be solar blankets. This solar array is over 3 m tall. (Made in Space)

Continue reading “Made in Space believes its on-orbit manufactured power supply can save militaries money” »