Menu

Blog

Archive for the ‘quantum physics’ category: Page 550

Apr 21, 2020

Scientists Explore Underwater Quantum Links for Submarines

Posted by in categories: encryption, internet, quantum physics, satellites

:oooo.


Underwater quantum links are possible across 30 meters (100 feet) of turbulent water, scientists have shown. Such findings could help to one day secure quantum communications for submarines.

Quantum cryptography exploits the quantum properties of particles such as photons to help encrypt and decrypt messages in a theoretically unhackable way. Scientists worldwide are now endeavoring to develop satellite-based quantum communications networks for a global real-time quantum Internet.

Continue reading “Scientists Explore Underwater Quantum Links for Submarines” »

Apr 21, 2020

New ‘Hot Qubits’ Let Quantum Computers Run 15X Warmer Than Before

Posted by in categories: computing, quantum physics

When people say quantum computing is “hot” right now they are most definitely talking metaphorically; today’s leading devices have to operate at close to absolute zero. Now two research groups have demonstrated technology that run s 15 times hotter, which could be a big step towards making the devices affordable and practical.

The reason quantum computers have to be run at such low temperatures is that the quantum states they rely on are incredibly fragile, and the slightest disturbance can cause the information encoded in them to be lost. To prevent this these devices are chilled to near absolute zero, where vibrations and thermal fluctuation are almost non existent.

Continue reading “New ‘Hot Qubits’ Let Quantum Computers Run 15X Warmer Than Before” »

Apr 21, 2020

Google’s Head of Quantum Computing Hardware Resigns

Posted by in categories: computing, quantum physics

John Martinis brought a long record of quantum computing breakthroughs when he joined Google in 2014. He quit after being reassigned to an advisory role.

Apr 20, 2020

Quantum entanglement offers unprecedented precision for GPS and more

Posted by in categories: biotech/medical, engineering, internet, mobile phones, quantum physics

Your phone’s GPS, the Wi-Fi in your house and communications on aircraft are all powered by radio-frequency, or RF, waves, which carry information from a transmitter at one point to a sensor at another. The sensors interpret this information in different ways. For example, a GPS sensor uses the angle at which it receives an RF wave to determine its own relative location. The more precisely it can measure the angle, the more accurately it can determine location.

In a new paper published in Physical Review Letters, University of Arizona engineering and optical sciences researchers, in collaboration with engineers from General Dynamics Mission Systems, demonstrate how a combination of two techniques—radio frequency photonics sensing and quantum metrology—can give sensor networks a previously unheard-of level of precision. The work involves transferring information from electrons to photons, then using to increase the photons’ sensing capabilities.

“This quantum sensing paradigm could create opportunities to improve GPS systems, astronomy laboratories and biomedical imaging capabilities,” said Zheshen Zhang, assistant professor of materials science and engineering and , and principal investigator of the university’s Quantum Information and Materials Group. “It could be used to improve the performance of any application that requires a of sensors.”

Apr 20, 2020

New Way To Levitate Objects Discovered

Posted by in categories: engineering, nanotechnology, quantum physics

O,.o circa 2007.


Theoretical physicists at the University of St. Andrews have created ‘incredible levitation effects’ by engineering the force of nature which normally causes objects to stick together by quantum force. By reversing this phenomenon, known as ‘Casimir force’, the scientists hope to solve the problem of tiny objects sticking together in existing novel nanomachines.

Professor Ulf Leonhardt and Dr Thomas Philbin of the University’s School of Physics & Astronomy believe that they can engineer the Casimir force of quantum physics to cause an object to repel rather than attract another in a vacuum.

Casimir force (discovered in 1948 and first measured in 1997) can be demonstrated in a gecko’s ability to stick to a surface with just one toe. However, it can cause practical problems in nanotechnology, and ways of preventing tiny objects from sticking to each other is the source of much interest.

Apr 19, 2020

The universe as quantum computer

Posted by in categories: computing, quantum physics

This article reviews the history of digital computation, and investigates just how far the concept of computation can be taken. In particular, I address the question of whether the universe itself is in fact a giant computer, and if so, just what kind of computer it is. I will show that the universe can be regarded as a giant quantum computer. The quantum computational model of the universe explains a variety of observed phenomena not encompassed by the ordinary laws of physics. In particular, the model shows that the quantum computational universe automatically gives rise to a mix of randomness and order, and to both simple and complex systems.

Apr 19, 2020

Quantum magnonics: The magnon meets the superconducting qubit

Posted by in category: quantum physics

O,.o circa 2016.


Nous appliquons les techniques de l’optique quantique micro-onde aux excitations collectives des spins d’une sphère macroscopique d’un isolant ferromagnétique. Nous mettons en évidence, dans la limite d’une unique excitation magnonique, le couplage fort entre un mode magnétostatique de la sphère et un mode d’une cavité micro-onde. En outre, nous avons ajouté un bit quantique supraconducteur à la cavité, ce qui permet de coupler ce bit quantique au mode de magnon, via l’échange virtuel d’un photon. Nous observons ainsi un anticroisement des fréquences de résonance du magnon et de la cavité. Cette plateforme hybride permet la création et la caratérisation d’états non classiques de magnons.

Apr 19, 2020

Quantum Computing Milestone: Researchers Compute With ‘Hot’ Silicon Qubits

Posted by in categories: computing, quantum physics

Two research groups say they’ve independently built quantum devices that can operate at temperatures above 1 Kelvin—15 times hotter than rival technologies can withstand.

The ability to work at higher temperatures is key to scaling up to the many qubits thought to be required for future commercial-grade quantum computers.

Continue reading “Quantum Computing Milestone: Researchers Compute With ‘Hot’ Silicon Qubits” »

Apr 19, 2020

One step closer to commercialisation: Intel’s big breakthrough will allow quantum computers to work at warm temperatures

Posted by in categories: computing, particle physics, quantum physics, space

Modern circuitry operates in binaries – switches can either be 0 or 1 – which in turn restricts their computing power to discrete values. Qubits, on the other hand, can hold both values depending on their state, and derives this property from quantum physics. Qubits are modelled on subatomic particles like electrons, giving them an edge over Boolean systems. Quantum computers are difficult to operate, in part due its bulk, power consumption, hardware complexity, and reliance on low temperatures.

Intel’s “hot” qubit technology ought to address the latter concern. These qubits are capable of operating at temperatures higher than 1 Kelvin (−458F / −273K), which is the warmest temperature that quantum computers till now were able to tolerate. Computers in outer space operate at 3 Kelvin. The practical benefits of this breakthrough will manifest itself if Intel can combine quantum hardware and control circuitry on the same chip. It has hitherto been difficult for researchers to separate control electronics for qubits from the qubits themselves owing to the frigid temperature that the latter require to function.

Intel will be hoping that this development will help it fabricate more efficient chips that meld the two parts on the same chip without compromising on fidelity. The commercialization of quantum computing still remains a pipe dream, but large corporations like Google and Intel are paving the way for improvements that could make quantum computers more viable. Even so, make sure you’re wearing a scarf before you go to collect your first quantum computer.

Apr 19, 2020

Boson particles discovery provides insights for quantum computing

Posted by in categories: computing, military, particle physics, quantum physics

Scientists found that a class of particles known as bosons can behave as an opposite class of particles called fermions, when forced into a line.

The research, conducted at Penn State University and funded in part by the Army Research Office, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, found that when the internal interactions among bosons in a one-dimensional gas are very strong, their velocity distribution transforms into that of a gas of non-interacting fermions when they expand in one dimension. The research is published in the journal Science.

“The performance of atomic clocks, quantum computers and quantum systems rely upon the proper curation of the properties of the chosen system,” said Dr. Paul Baker, program manager, atomic and molecular physics at ARO. “This research effort demonstrates that the system statistics can be altered by properly constraining the dimensions of the system. In addition to furthering our understanding of foundational principles, this discovery could provide a method for dynamically switching a system from bosonic to fermionic to best meet the military need.”