Menu

Blog

Archive for the ‘particle physics’ category: Page 84

Mar 31, 2024

Study Finds No Neutrino Decoherence, Sets Icy Grip on Neutrino-Quantum Gravity Interactions

Posted by in categories: particle physics, quantum physics

IceCube Researchers reported on the stringent constraints on potential quantum fluctuations of spacetime itself.

Mar 31, 2024

New conversion surfaces to enhance spacecraft instruments

Posted by in categories: engineering, particle physics, space

Southwest Research Institute has invested in research to enhance the capabilities of spacecraft instruments. Consequently, they have developed more effective conversion surfaces for the detection and analysis of low-energy particles in outer space.

Led by Dr. Jianliang Lin of Mechanical Engineering and Dr. Justyna Sokół of the Space Science Division, the project could potentially change our understanding of space physics and exploration.

Mar 30, 2024

Entangled Titans: unraveling the mysteries of Quantum Mechanics with top quarks

Posted by in categories: particle physics, quantum physics

🔗 Top quark and top antiquark entanglement 🔗

The CMS experiment has just reported the observation and confirms the existence of #entanglement between the top #quark and its #Antiparticle beyond reasonable doubt.


The CMS experiment has just reported the observation of quantum entanglement between a top quark and a top antiquark, simultaneously produced at the LHC.

Continue reading “Entangled Titans: unraveling the mysteries of Quantum Mechanics with top quarks” »

Mar 30, 2024

Scientists Find Microplastics in Cave Sealed Off From All Humans

Posted by in category: particle physics

Even a cave that’s been closed to the public for three decades can’t escape the reach of microplastic particles.

Mar 30, 2024

Study demonstrates atomic layer deposition route to scalable, electronic-grade van der Waals tellurium thin films

Posted by in categories: engineering, particle physics

A research team, led by Professor Joonki Suh in the Department of Materials Science and Engineering and the Graduate School of Semiconductor Materials and Devices Engineering at UNIST, has made a significant breakthrough in thin film deposition technology. By employing an innovative atomic layer deposition (ALD) process, Professor Seo successfully achieved regular arrangement of tellurium (Te) atoms at low temperatures as low as 50 degrees Celsius.

The ALD method is a cutting-edge thin film process that enables precise stacking of semiconductor materials at the atomic layer level on three-dimensional structures—even at low process temperatures. However, traditional application to next-generation semiconductors requires high processing temperatures above 250 degrees Celsius and additional heat treatment exceeding 450 degrees Celsius.

In this research, the UNIST team applied ALD to monoelemental van der Waals tellurium—a material under extensive investigation for its potential applications in and thermoelectric materials.

Mar 30, 2024

Opposites attract? Not in new experiment that finds loophole in fundamental rule of physics

Posted by in categories: particle physics, space

Related: Scientists find ‘ghost particles’ spewing from our Milky Way galaxy in landmark discovery (video)

“Because like-charged objects in a vacuum are expected to repel regardless of whether the sign of the charge they carry is positive or negative, the expectation is that like-charged particles in solution must also monotonically repel,” the researchers wrote in the paper.

Continue reading “Opposites attract? Not in new experiment that finds loophole in fundamental rule of physics” »

Mar 30, 2024

Vacancy Spectroscopy of Non-Abelian Kitaev Spin Liquids

Posted by in category: particle physics

A proposed approach to detect Majorana fermions in Kitaev spin liquids by using scanning tunneling microscopy could lead to the unambiguous confirmation of both the spin-liquid state and its Majorana zero modes.

Mar 30, 2024

Mapping the best route for a spacecraft traveling beyond the sun’s sphere of influence

Posted by in categories: cosmology, mapping, particle physics

The heliosphere—made of solar wind, solar transients, and the interplanetary magnetic field—acts as our solar system’s personal shield, protecting the planets from galactic cosmic rays. These extremely energetic particles accelerated outwards from events like supernovas and would cause a huge amount of damage if the heliosphere did not mostly absorb them.

Mar 29, 2024

A new fullertube molecule is found

Posted by in category: particle physics

For years, C130 fullertubes—molecules made up of 130 carbon atoms—have existed only in theory. Now, leading an international team of scientists, a UdeM doctoral student in physics has successfully shown them in real life—and even managed to capture some in a photograph.

Mar 29, 2024

Physicists propose new way to search for dark matter: Small-scale solution could be key to solving large-scale mystery

Posted by in categories: cosmology, particle physics, quantum physics

Ever since its discovery, dark matter has remained invisible to scientists despite the launch of multiple ultra-sensitive particle detector experiments around the world over several decades.

Now, physicists at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory are proposing a new way to look for using quantum devices, which might be naturally tuned to detect what researchers call thermalized dark matter.

Most dark matter experiments hunt for galactic dark matter, which rockets into Earth directly from space, but another kind might have been hanging around Earth for years, said SLAC physicist Rebecca Leane, who was an author of the new study.

Page 84 of 592First8182838485868788Last