Menu

Blog

Archive for the ‘particle physics’ category: Page 310

Nov 22, 2021

Exotic New Material Could Be Two Superconductors in One — With Serious Quantum Computing Applications

Posted by in categories: computing, particle physics, quantum physics

Work has potential applications in quantum computing, and introduces new way to plumb the secrets of superconductivity. MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s.


“An important theme of our research is that new physics comes from new materials,” says Joseph Checkelsky, lead principal investigator of the work and the Mitsui Career Development Associate Professor of Physics. “Our initial report last year was of this new material. This new work reports the new physics.”

Checkelsky’s co-authors on the current paper include lead author Aravind Devarakonda PhD ’21, who is now at Columbia University. The work was a central part of Devarakonda’s thesis. Co-authors are Takehito Suzuki, a former research scientist at MIT now at Toho University in Japan; Shiang Fang, a postdoc in the MIT Department of Physics; Junbo Zhu, an MIT graduate student in physics; David Graf of the National High Magnetic Field Laboratory; Markus Kriener of the RIKEN Center for Emergent Matter Science in Japan; Liang Fu, an MIT associate professor of physics; and Efthimios Kaxiras of Harvard University.

Continue reading “Exotic New Material Could Be Two Superconductors in One — With Serious Quantum Computing Applications” »

Nov 22, 2021

Skyrmions: Fundamental particles modeled in beam of light

Posted by in categories: mathematics, particle physics, space

Scientists at the University of Birmingham have succeeded in creating an experimental model of an elusive kind of fundamental particle called a skyrmion in a beam of light.

The breakthrough provides physicists with a real system demonstrating the behavior of skyrmions, first proposed 60 years ago by a University of Birmingham mathematical physicist, Professor Tony Skyrme.

Skyrme’s idea used the structure of spheres in 4-dimensional space to guarantee the indivisible nature of a skyrmion particle in 3 dimensions. 3D particle-like skyrmions are theorized to tell us about the early origins of the Universe, or about the physics of exotic materials or cold atoms. However, despite being investigated for over 50 years, 3D skyrmions have been seen very rarely in experiments. The most current research into skyrmions focuses on 2D analogs, which shows promise for new technologies.

Nov 22, 2021

The Algorithm That Lets Particle Physicists Count Higher Than Two

Posted by in categories: information science, particle physics

Through his encyclopedic study of the electron, an obscure figure named Stefano Laporta found a handle on the subatomic world’s fearsome complexity. His algorithm has swept the field.

Nov 22, 2021

An Absolutely Bonkers Plan to Give Mars an Artificial Magnetosphere

Posted by in categories: particle physics, space

Terraforming Mars is one of the great dreams of humanity. Mars has a lot going for it. Its day is about the same length as Earth’s, it has plenty of frozen water just under its surface, and it likely could be given a reasonably breathable atmosphere in time. But one of the things it lacks is a strong magnetic field. So if we want to make Mars a second Earth, we’ll have to give it an artificial one.

The reason magnetic fields are so important is that they can shield a planet from solar wind and ionizing particles. Earth’s magnetic field prevents most high-energy charged particles from reaching the surface. Instead, they are deflected from Earth, keeping us safe. The magnetic field also helps prevent solar winds from stripping Earth’s atmosphere over time. Early Mars had a thick, water-rich atmosphere, but it was gradually depleted without the protection of a strong magnetic field.

Unfortunately, we can’t just recreate Earth’s magnetic field on Mars. Our field is generated by a dynamo effect in Earth’s core, where the convection of iron alloys generates Earth’s geomagnetic field. The interior of Mars is smaller and cooler, and we can’t simply “start it up” to create a magnetic dynamo. But there are a few ways we can create an artificial magnetic field, as a recent study shows.

Nov 22, 2021

“Electron family” state of matter hints at new type of superconductivity

Posted by in categories: particle physics, quantum physics

Superconductivity occurs when electrons in a metal pair up and move through the material without resistance. But there may be more to the story than we thought, as scientists in Germany have now discovered that electrons can also group together into families of four, creating a new state of matter and, potentially, a new type of superconductivity.

Conductivity is a measure of how easily electrons (and therefore electricity) can move through a material. But even in materials that make good conductors, like gold, electrons will still encounter some resistance. Superconductors, however, remove all such barriers and provide zero resistance at ultracold temperatures.

The reason electrons can move through superconductors so easily is because they pair up through a quantum effect known as Cooper pairing. In doing so, they raise the minimum amount of energy it takes to interfere with the electrons – and if the material is cold enough, its atoms won’t have enough thermal energy to disturb these Cooper pairs, allowing the electrons to flow freely with no loss of energy.

Nov 21, 2021

Entanglement Theory may Reveal a Reality we can’t Handle

Posted by in categories: particle physics, quantum physics

What is entanglement theory? It is a Mystery, and here is a potential solution. But its implications are so paradigm shattering that most scientists refuse to believe it. Maybe we can’t handle the truth?

Imagine you found a pair of dice such that no matter how you tossed them, they always added up to 7. Besides becoming the richest man in Vegas, what you would have there is something called an entangled pair of dice.

Continue reading “Entanglement Theory may Reveal a Reality we can’t Handle” »

Nov 21, 2021

How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis

Posted by in categories: cosmology, particle physics, quantum physics

Special offer for ArvinAsh viewers — Go to: https://brilliant.org/arvinash — you can sign up for free! The first 200 people will get 20% off their annual membership.

Background videos:
Fundamental forces: https://youtu.be/669QUJrF4u0
Electroweak theory: https://youtu.be/u05VK0pSc7I
Is Big Bang hidden in gravity waves: https://youtu.be/VXr1mzY2GnY
Cosmic Microwave background: https://youtu.be/XcXCrFIivyk.

Continue reading “How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis” »

Nov 21, 2021

Is the Universe Fine Tuned for Life? The Case FOR and AGAINST Fine Tuning

Posted by in categories: alien life, chemistry, particle physics

Get your SPECIAL OFFER for MagellanTV here: https://try.magellantv.com/arvinash — It’s an exclusive offer for our viewers! Start your free trial today. MagellanTV is a new kind of streaming service run by filmmakers with 3,000+ documentaries! Check out our personal recommendation and MagellanTV’s exclusive playlists: https://www.magellantv.com/genres/science-and-tech.

Arguments for fine tuning: Physics has many constants like the charge of the electron, the gravitational constant, Planck’s constant. If any of their values were different, our universe, as we know it, would not be the same, and life would probably not exist.
0:00 — Defining fine tuning.
2:20 — Gravitational constant.
3:59 — Electromagnetic Force.
5:02 — Strong force.
6:13 — Weak force.
7:51 — Philosophical Arguments against fine tuning.
9:36 — Scientific arguments against fine tuning.
11:59 — Sentient puddle.
13:29 — Does fine tuning need an agent.
15:14 — Louse on the tail a lion.
Some say that it could not have occurred by chance, that there must be some agent, like a god that set up the constants to enable life.

Continue reading “Is the Universe Fine Tuned for Life? The Case FOR and AGAINST Fine Tuning” »

Nov 21, 2021

Is God in Physics? Fine Tuning Scrutinized

Posted by in categories: alien life, information science, mathematics, particle physics

Signup for your FREE TRIAL to The GREAT COURSES PLUS here: http://ow.ly/5KMw30qK17T. Until 350 years ago, there was a distinction between what people saw on earth and what they saw in the sky. There did not seem to be any connection.

Then Isaac Newton in 1,687 showed that planets move due to the same forces we experience here on earth. If things could be explained with mathematics, to many people this called into question the need for a God.

Continue reading “Is God in Physics? Fine Tuning Scrutinized” »

Nov 21, 2021

What a fusion breakthrough means for the future of clean energy

Posted by in categories: military, nuclear energy, particle physics

Scientists have been experimenting with the creation of nuclear energy for decades and have used nuclear fission — the process of breaking atoms apart — to power everything from devasting atomic bombs to clean nuclear energy.

However, this kind of nuclear energy is different from cosmic inspired nuclear fusion in one significant way: it’s not self-sustaining. Creating enough energy on Earth to power this kind of reaction has been just out of reach for decades.

Continue reading “What a fusion breakthrough means for the future of clean energy” »