Menu

Blog

Archive for the ‘particle physics’ category: Page 208

Jan 22, 2023

Engineers grow ‘perfect’ atom-thin materials on industrial silicon wafers

Posted by in categories: computing, particle physics

True to Moore’s Law, the number of transistors on a microchip has doubled every year since the 1960s. But this trajectory is predicted to soon plateau because silicon — the backbone of modern transistors — loses its electrical properties once devices made from this material dip below a certain size.

Enter 2D materials — delicate, two-dimensional sheets of perfect crystals that are as thin as a single atom. At the scale of nanometers, 2D materials can conduct electrons far more efficiently than silicon. The search for next-generation transistor materials therefore has focused on 2D materials as potential successors to silicon.

But before the electronics industry can transition to 2D materials, scientists have to first find a way to engineer the materials on industry-standard silicon wafers while preserving their perfect crystalline form. And MIT engineers may now have a solution.

Jan 21, 2023

The Floquet engineering of quantum materials

Posted by in categories: engineering, particle physics, quantum physics

Quantum materials are materials with unique electronic, magnetic or optical properties, which are underpinned by the behavior of electrons at a quantum mechanical level. Studies have showed that interactions between these materials and strong laser fields can elicit exotic electronic states.

In recent years, many physicists have been trying to elicit and better understand these exotic states, using different material platforms. A class of materials that was found to be particularly promising for studying some of these states are transition metal dichalcogenides.

Monolayer transition metal dichalcogenides are 2D materials that consist in single layers of atoms from a transition metal (e.g., tungsten or molybdenum) and a chalcogen (e.g., sulfur or selenium), which are arranged into a . These materials have been found to offer exciting opportunities for Floquet engineering (a technique to manipulate the properties of materials using lasers) of excitons (quasiparticle electron-hole correlated states).

Jan 20, 2023

Photonic hopfions: Light shaped as a smoke ring that behaves like a particle

Posted by in categories: climatology, mathematics, nanotechnology, particle physics, quantum physics

We can frequently find in our daily lives a localized wave structure that maintains its shape upon propagation—picture a smoke ring flying in the air. Similar stable structures have been studied in various research fields and can be found in magnets, nuclear systems, and particle physics. In contrast to a ring of smoke, they can be made resilient to perturbations. This is known in mathematics and physics as topological protection.

A typical example is the nanoscale hurricane-like texture of a magnetic field in magnetic thin films, behaving as particles—that is, not changing their shape—called skyrmions. Similar doughnut-shaped (or toroidal) patterns in 3D space, visualizing complex spatial distributions of various properties of a wave, are called hopfions. Achieving such structures with is very elusive.

Recent studies of structured light revealed strong spatial variations of polarization, phase, and amplitude, which enable the understanding of—and open up opportunities for designing—topologically stable optical structures behaving like particles. Such quasiparticles of light with control of diversified topological properties may have great potential, for example as next-generation information carriers for ultra-large-capacity optical information transfer, as well as in quantum technologies.

Jan 20, 2023

Powerful laser blast used to control lightning for the first time

Posted by in categories: climatology, particle physics

“Although this research field has been very active for more than 20 years, this is the first field-result that experimentally demonstrates lightning guided by lasers,” the researchers wrote in the study. “This work paves the way for new atmospheric applications of ultrashort lasers and represents an important step forward in the development of a laser based lightning protection for airports, launchpads or large infrastructures.”

Lightning emerges when atmospheric static electricity, generated by the friction of ice clumps and rain in stormclouds, separates electrons from atoms. The negatively charged electrons then pool at the stormcloud’s base and attract positive charges from the ground. As electrons steadily accumulate, they begin to overcome the resistance of the air to their flow, ionizing the atmosphere below them as they approach the ground in multiple forking (and invisible) “leader” paths. When the first leader path makes contact with the ground, electrons hop to the earth from the point of contact, discharging from the bottom up in a flash of lightning (called the return stroke) that travels to the top of the cloud.

Jan 20, 2023

The problems with Helion Energy — a response to Real Engineering

Posted by in categories: engineering, nuclear energy, particle physics

I still like Helion… but not for a power plant. Instead, this is an interesting route to a fusion drive.

This is also a very good channel. It is worth watching his other fusion videos first.

Continue reading “The problems with Helion Energy — a response to Real Engineering” »

Jan 19, 2023

Quantum Computing with Neutral Atoms

Posted by in categories: computing, information science, particle physics, quantum physics

Why the recent surge in jaw-dropping announcements? Why are neutral atoms seeming to leapfrog other qubit modalities? Keep reading to find out.

The table below highlights the companies working to make Quantum Computers using neutral atoms as qubits:

And as an added feature I am writing this post to be “entangled” with the posts of Brian Siegelwax, a respected colleague and quantum algorithm designer. My focus will be on the hardware and corporate details about the companies involved, while Brian’s focus will be on actual implementation of the platforms and what it is like to program on their devices. Unfortunately, most of the systems created by the companies noted in this post are not yet available (other than QuEra’s), so I will update this post along with the applicable hot links to Brian’s companion articles, as they become available.

Jan 19, 2023

Scientists grow ‘perfect’ atom-thin materials on industrial silicon wafers

Posted by in categories: computing, particle physics

True to Moore’s Law, the number of transistors on a microchip has doubled every year since the 1960s. But this trajectory is predicted to soon plateau because silicon—the backbone of modern transistors—loses its electrical properties once devices made from this material dip below a certain size.

Enter 2D materials—delicate, two-dimensional sheets of perfect crystals that are as thin as a . At the scale of nanometers, 2D materials can conduct electrons far more efficiently than silicon. The search for next-generation transistor materials therefore has focused on 2D materials as potential successors to silicon.

But before the can transition to 2D materials, scientists have to first find a way to engineer the materials on industry-standard while preserving their perfect crystalline form. And MIT engineers may now have a solution.

Jan 19, 2023

New MIT method uses 2D materials to “catch up” with Moore’s Law

Posted by in categories: computing, particle physics

“This will change the paradigm of Moore’s Law.”

Moore’s Law predicted that the number of transistors on a microchip would double every year after 1960, though that rate would eventually hit a wall due to the fact silicone loses electrical properties past a certain size.

One possible solution comes in the form of 2D materials, also known as single-layer materials. These incredibly delicate two-dimensional sheets of perfect crystals are only a single atom thin. Crucially, at the nanometer scale, they can conduct electrons far more efficiently than silicon.

Jan 19, 2023

No-Show for Cosmic-Ray-Boosted, Lightweight Dark Matter

Posted by in categories: cosmology, particle physics

Interactions with cosmic rays could make low-mass dark matter particles detectable by neutrino observatories. But an analysis of two decades’ worth of data shows no signs of the particles.

Jan 17, 2023

Lab develops new method for on-chip generation of single photon

Posted by in categories: computing, particle physics, quantum physics

As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.

Developmentally, however, quantum devices today are “about where the computer was in the 1950s,” which it is to say, the very beginning. That’s according to Kamyar Parto, a sixth-year Ph.D. student in the UC Santa Barbara lab of Galan Moody, an expert in quantum photonics and an assistant professor of electrical and computer engineering.

Parto is co-lead author of a paper published in the journal Nano Letters, describing a key advance: the development of a kind of on-chip “factory” for producing a steady, fast stream of single photons, essential to enabling photonic-based quantum technologies.