Menu

Blog

Archive for the ‘particle physics’ category: Page 170

Jun 7, 2023

Physicists discover an exotic material made of bosons

Posted by in categories: materials, particle physics

Take a lattice—a flat section of a grid of uniform cells, like a window screen or a honeycomb—and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it’s between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where UC Santa Barbara physicists found some interesting material behaviors.

“We discovered a new state of matter—a bosonic correlated insulator,” said Richen Xiong, a graduate student researcher in the group of UCSB condensed matter physicist Chenhao Jin, and the lead author of a paper that appears in the journal Science.

According to Xiong, Jin and collaborators from UCSB, Arizona State University and the National Institute for Materials Science in Japan, this is the first time such a material—a highly ordered crystal of bosonic particles called excitons—has been created in a “real” (as opposed to synthetic) matter system.

Jun 7, 2023

Magnetic trap keeps a superconducting microsphere levitated and stable

Posted by in category: particle physics

It might not look like much, but this tiny levitating particle could be the key to a new generation.

Jun 7, 2023

Novel insights on the interplay of electromagnetism and the weak nuclear force

Posted by in categories: computing, particle physics

Outside atomic nuclei, neutrons are unstable particles, with a lifetime of about fifteen minutes. The neutron disintegrates due to the weak nuclear force, leaving behind a proton, an electron, and an antineutrino. The weak nuclear force is one of the four fundamental forces in the universe, along with the strong force, the electromagnetic force, and the gravitational force.

Comparing experimental measurements of neutron decay with theoretical predictions based on the weak nuclear force can reveal as-yet undiscovered interactions. To do so, researchers must achieve extremely high levels of precision. A team of nuclear theorists has uncovered a new, relatively large effect in neutron decay that arises from the interplay of the weak and electromagnetic forces.

This research identified a shift in the strength with which a spinning neutron experiences the . This has two major implications. First, scientists have known since 1956 that due to the weak force, a system and one built like its do not behave in the same way. In other words, mirror reflection symmetry is broken. This research affects the search for new interactions, technically known as “right-handed currents,” that, at very short distances of less than one hundred quadrillionths of a centimeter, restore the universe’s mirror-reflection symmetry. Second, this research points to the need to compute electromagnetic effects with higher precision. Doing so will require the use of future high-performance computers.

Jun 6, 2023

Quantum repeater transmits entanglement over 50 kilometres

Posted by in categories: computing, particle physics, quantum physics

Physicists at the Universities of Innsbruck in Austria and Paris-Saclay in France have combined all the key functionalities of a long-distance quantum network into a single system for the first time. In a proof-of-principle experiment, they used this system to transfer quantum information via a so-called repeater node over a distance of 50 kilometres – far enough to indicate that the building blocks of practical, large-scale quantum networks may soon be within reach.

Quantum networks have two fundamental components: the quantum systems themselves, known as nodes, and one or more reliable connections between them. Such a network could work by connecting the quantum bits (or qubits) of multiple quantum computers to “share the load” of complex quantum calculations. It could also be used for super-secure quantum communications.

But building a quantum network is no easy task. Such networks often work by transmitting single photons that are entangled; that is, its quantum state is closely linked to the state of another quantum particle. Unfortunately, the signal from a single photon is easily lost over long distances. Carriers of quantum information can also lose their quantum nature in a process known as decoherence. Boosting these signals is therefore essential.

Jun 5, 2023

Why has there been no progress in physics since 1973?

Posted by in categories: particle physics, quantum physics

The twentieth century was a truly exciting time in physics.

From 1905 to 1973, we made extraordinary progress probing the mysteries of the universe: special relativity, general relativity, quantum mechanics, the structure of the atom, the structure of the nucleus, enumerating the elementary particles.

Continue reading “Why has there been no progress in physics since 1973?” »

Jun 4, 2023

Everything Will Evaporate

Posted by in categories: cosmology, particle physics, quantum physics

Even space and time if it’s quantum.


What will be the ultimate fate of our universe? There are a number of theories and possibilities, but at present the most likely scenario seems to be that the universe will continue to expand, most mass will eventually find its way into a black hole, and those black holes will slowly evaporate into Hawking Radiation, resulting in what is called the “heat death” of the universe. Don’t worry, this will likely take 1.7×10106 years, so we got some time.

But what about objects, like stellar remnants, that are not black holes? Will the ultimate fate of the universe still contain some neutron stars and cold white dwarfs that managed to never get sucked up by a black hole? To answer this question we have to back up a bit and talk about Hawking Radiation.

Continue reading “Everything Will Evaporate” »

Jun 4, 2023

The ‘breath’ between atoms—a new building block for quantum technology

Posted by in categories: computing, particle physics, quantum physics

University of Washington researchers have discovered they can detect atomic “breathing,” or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic “breath” could help researchers encode and transmit quantum information.

The researchers also developed a device that could serve as a new type of building block for quantum technologies, which are widely anticipated to have many future applications in fields such as computing, communications and sensor development.

The researchers published these findings June 1 in Nature Nanotechnology.

Jun 4, 2023

Quantum Physics Could Explain Nearly All the Mysteries of How Life Works

Posted by in categories: biological, particle physics, quantum physics

Quantum effects are phenomena that occur between atoms and molecules that can’t be explained by classical physics. It has been known for more than a century that the rules of classical mechanics, like Newton’s laws of motion, break down at atomic scales. Instead, tiny objects behave according to a different set of laws known as quantum mechanics.

For humans, who can only perceive the macroscopic world, or what’s visible to the naked eye, quantum mechanics can seem counterintuitive and somewhat magical. Things you might not expect happen in the quantum world, like electrons “tunneling” through tiny energy barriers and appearing on the other side unscathed or being in two different places at the same time in a phenomenon called superposition.

I am trained as a quantum engineer. Research in quantum mechanics is usually geared toward technology. However, and somewhat surprisingly, there is increasing evidence that nature – an engineer with billions of years of practice — has learned how to use quantum mechanics to function optimally. If this is indeed true, it means that our understanding of biology is radically incomplete. It also means that we could possibly control physiological processes by using the quantum properties of biological matter.

Jun 4, 2023

Scientists detect the breath between atoms

Posted by in category: particle physics

Ruoming Peng/University of Washington.

This is according to a press release published by the institution on Friday.

Jun 3, 2023

Another Way for Black Holes to Evaporate

Posted by in categories: cosmology, particle physics, quantum physics

The quantum fluctuations that pervade empty space spontaneously give birth to pairs of particles and antiparticles. Ordinarily, these pairs annihilate so promptly that their existence is virtual. But a powerful field can pull a pair’s members apart for long enough that their existence becomes real. In 1951 Julian Schwinger calculated how strong an electric field needs to be to beget electron–positron pairs. Now Michael Wondrak and his colleagues of Radboud University in the Netherlands have proposed that particle pairs can be brought into existence by the immense gravitational tidal forces around a black hole [1].

Wondrak and his colleagues considered all the paths a pair of virtual particles could take during their brief existence. If the vacuum is stable, all pairs that are created are also destroyed. But a strong field destabilizes the vacuum, makes some paths more likely than others, and leads to a deficit of pairs that recombine. The deficit is balanced by a net outflow of real particles, which, in the case of a black hole’s gravitational field, leads to the black hole’s eventual evaporation.

The theorists’ approach is sufficiently general that it could reproduce not only Schwinger’s effect but also Stephen Hawking’s 1974 proposal that if a particle–antiparticle pair springs into virtual existence near a black hole’s event horizon, one member could fall in while the other escapes. What’s more, the researchers found that Hawking’s effect is a special case of a more general phenomenon. Pulling virtual particles into existence depends only on the stretching of spacetime wrought by a curved gravitational field and does not require an event horizon as Hawking originally suggested. One intriguing implication is that a neutron star, whose Schwarzschild radius lies beneath the stellar surface, can also beget particle pairs and decay.