Menu

Blog

Archive for the ‘particle physics’ category: Page 163

Jul 10, 2023

Quantum Physics in a Leaf? Scientists Discover Link Between Photosynthesis and the “Fifth State of Matter”

Posted by in categories: particle physics, quantum physics

Inside a lab, scientists marvel at a strange state that forms when they cool down atoms to nearly absolute zero. Meanwhile, just outside their window, trees are absorbing sunlight and converting it into new leaves. These two scenarios may seem entirely unrelated, but a recent study from the University of Chicago proposes that these processes are not as distinct as they might appear on the surface.

Published in the journal PRX Energy, the study established connections at the atomic level between the process of photosynthesis and exciton condensates, —a strange state of physics that allows energy to flow frictionlessly through a material. According to the authors, this discovery is not only fascinating from a scientific perspective, but it may also offer new perspectives for electronics design.

Jul 10, 2023

New material shows promise for next-generation memory technology

Posted by in categories: computing, particle physics

Phase change memory is a type of nonvolatile memory that harnesses a phase change material’s (PCM) ability to shift from an amorphous state, i.e., where atoms are disorganized, to a crystalline state, i.e., where atoms are tightly packed close together. This change produces a reversible electrical property which can be engineered to store and retrieve data.

While this field is in its infancy, could potentially revolutionize because of its high storage density, and faster read and write capabilities. But still, the complex switching mechanism and intricate fabrication methods associated with these materials have posed challenges for mass production.

In recent years, two-dimensional (2D) Van Der Waals (vdW) di-chalcogenides have emerged as a promising PCM for usage in phase change memory.

Jul 10, 2023

How quantum dots can revolutionize solar energy

Posted by in categories: particle physics, quantum physics, solar power, sustainability

There’s a new way to harness the power of the sun and it may just revolutionize how we approach solar energy. The development is called quantum dots and it consists of tiny semiconductor particles only a few nanometers in size.

This is according to a report by Fagen Wasanni published on Saturday.

“Quantum dots have unique properties that make them ideal for use in solar cells. Their small size allows them to absorb light from a wide range of wavelengths, including those that traditional solar cells cannot capture. This means that quantum dot-based solar cells can potentially convert more sunlight into electricity, significantly increasing their efficiency,” states the report.

Jul 9, 2023

Revolutionizing Electrochemistry: Innovating With Nanoporous Model Electrodes

Posted by in categories: chemistry, nanotechnology, particle physics

Scientists have created an innovative model membrane electrode with hollow giant carbon nanotubes and a wide range of nanopore dimensions. The invention aids in understanding electrochemical behaviors and could significantly advance our knowledge of porous carbon materials in electrochemical systems.

Researchers at Tohoku University and Tsinghua University have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research. This innovative electrode, fabricated through a meticulous process, showcases an ordered array of hollow giant carbon nanotubes (gCNTs) within a nanoporous membrane, unlocking new possibilities for energy storage and electrochemical studies.

The key breakthrough lies in the construction of this novel electrode. The researchers developed a uniform carbon coating technique on anodic aluminum oxide (AAO) formed on an aluminum substrate, with the barrier layer eliminated. The resulting conformally carbon-coated layer exhibits vertically aligned gCNTs with nanopores ranging from 10 to 200 nm in diameter and 2 μm to 90 μm in length, covering small electrolyte molecules to bio-related large matters such as enzymes and exosomes. Unlike traditional composite electrodes, this self-standing model electrode eliminates inter-particle contact, ensuring minimal contact resistance — something essential for interpreting the corresponding electrochemical behaviors.

Jul 9, 2023

New priming method improves battery life, efficiency

Posted by in categories: climatology, particle physics, sustainability

Silicon anode batteries have the potential to revolutionize energy storage capabilities, which is key to meeting climate goals and unlocking the full potential of electric vehicles.

However, the irreversible depletion of lithium ions in silicon anodes puts a major constraint on the development of next-generation lithium-ion batteries.

Scientists at Rice University’s George R. Brown School of Engineering have developed a readily scalable method to optimize prelithiation, a process that helps mitigate lithium loss and improves battery life cycles by coating silicon anodes with stabilized lithium metal particles (SLMPs).

Jul 9, 2023

Scientists make loudspeakers that can absorb sound for pure silence

Posted by in category: particle physics

This is according to a press release by the institution published last week.

“We wanted to reduce the effect of the membrane as much as possible, since it’s heavy. But what can be as light as air? The air itself,” explained Stanislav Sergeev, a postdoc at EPFL’s Acoustic Group and first author.

“We first ionize the thin layer of air between the electrodes that we call a plasmacoustic metalayer. The same air particles, now electrically charged, can instantaneously respond to external electrical field commands and effectively interact with sound vibrations in the air around the device to cancel them out.”

Jul 8, 2023

Webb Space Telescope Illuminates Earliest Strands of the Cosmic Web

Posted by in categories: cosmology, particle physics, space travel

Woven across our universe is a weblike structure of galaxies called the cosmic web. Galaxies are strung along filaments in this vast web, which also contains enormous voids. Now, astronomers using Webb have discovered an early strand of this structure, a long, narrow filament of 10 galaxies that existed just 830 million years after the big bang. The 3 million light-year.

A light year is the distance that a particle of light (photon) will travel in a year—about 10 trillion kilometers (6 trillion miles). It is a useful unit for measuring distances between stars.

Jul 6, 2023

A New Kind of Quantum Computer Could Be Built on The Strange Physics of Sound Waves

Posted by in categories: computing, particle physics, quantum physics

When you turn on a lamp to brighten a room, you are experiencing light energy transmitted as photons, which are small, discrete quantum packets of energy.

These photons must obey the sometimes strange laws of quantum mechanics, which, for instance, dictate that photons are indivisible, but at the same time, allow a photon to be in two places at once.

Continue reading “A New Kind of Quantum Computer Could Be Built on The Strange Physics of Sound Waves” »

Jul 5, 2023

From Atoms to Materials: Algorithmic breakthrough unlocks path to sustainable technologies

Posted by in categories: chemistry, computing, information science, mathematics, particle physics, sustainability

New research by the University of Liverpool could signal a step change in the quest to design the new materials that are needed to meet the challenge of net zero and a sustainable future.

Published in the journal Nature, Liverpool researchers have shown that a mathematical algorithm can guarantee to predict the structure of any material just based on knowledge of the atoms that make it up.

Developed by an interdisciplinary team of researchers from the University of Liverpool’s Departments of Chemistry and Computer Science, the algorithm systematically evaluates entire sets of possible structures at once, rather than considering them one at a time, to accelerate identification of the correct solution.

Jul 5, 2023

New navigation system built on cosmic rays works even when GPS fails

Posted by in categories: particle physics, satellites

A new navigation system that tracks subatomic particles constantly bombarding Earth could help us get around indoors, underground, and underwater — all the places GPS fails.

The challenge: GPS (the Global Positioning System) is a group of 31 satellites, constantly transmitting radio signals from about 12,500 miles above Earth’s surface. Receivers in phones, cars, planes, and ships then use data from multiple satellites’ signals to calculate their own locations on Earth.

While GPS has revolutionized surface transportation, satellite signals can reflect off solid surfaces, making the navigation system incapable of accurately pinpointing the locations of receivers indoors, underground, and underwater.