Menu

Blog

Archive for the ‘neuroscience’ category: Page 290

May 20, 2023

Soft e-skin that communicates with the brain

Posted by in category: neuroscience

Researchers at Stanford University have developed digital skin that can convert sensations such as heat and pressure to electrical signals that can be read by electrodes implanted in the human brain.

Although such capability was developed years earlier, the components required at that time to convert digital signals were rigid and unwieldy.

This new is soft as, well, skin. The conversion elements are seamlessly incorporated within the skin, which measures a few tens of nanometers thick.

May 19, 2023

When do humans become conscious — in the womb or after birth?

Posted by in category: neuroscience

Perhaps the most intriguing evidence of consciousness in early infancy comes from a study conducted by Julia Moser at the University of Tübingen. Moser and her colleagues used second-order (“global”) auditory oddballs to probe for consciousness. Consider a sequence of tones that are clustered together into four groups of four tones, where each tone is either high pitched or low pitched. In the global oddball paradigm, the final tone in the first three groups differs from the preceding three tones (for example, if they are low then it will be high), but the final member of the last group will be identical to the preceding three tones (for example, they might all be low tones). In this scenario, the final tone is not an oddball (that is, outlier) relative to the preceding three tones, but it is an oddball relative to the entire sequence, for anyone who hears the three earlier groups of tones will expect the final member of this group to be an oddball.

Earlier research has suggested that the brain produces a distinctive response to second-order oddballs, which can be roughly thought of as a neural marker of surprise. Further, there is some evidence that this response is produced only when an individual is conscious. Using fetal magnetoencephalography (MEG), Moser and her team discovered that a version of this response could be found not only in newborns but also in 35-week-old fetuses. Again, this result does not provide proof of perceptual awareness in early infancy (let alone in utero), but it is yet another illustration of how neuroscience is beginning to pull back the curtain on infant experience.

May 19, 2023

Structural brain abnormalities and their association with language impairment in school-aged children with Autism Spectrum Disorder

Posted by in categories: biotech/medical, life extension, neuroscience, sex

Language impairment is comorbid in most children with Autism Spectrum Disorder (ASD) but its neural basis is poorly understood. Using structural magnetic resonance imaging (MRI), the present study provides the whole-brain comparison of both volume-and surface-based characteristics between groups of children with and without ASD and investigates the relationships between these characteristics in language-related areas and the language abilities of children with ASD measured with standardized tools. A total of 36 school-aged children participated in the study: 18 children with ASD and 18 age-and sex-matched typically developing controls. The results revealed that multiple regions differed between groups of children in gray matter volume, gray matter thickness, gyrification, and cortical complexity (fractal dimension).

May 19, 2023

AI therapy: Voice-assisted Lumen app hopes to help people with mild depression and anxiety

Posted by in categories: neuroscience, robotics/AI

Researchers hope the new app can help bridge the gap between supply and demand for mental health support.

Asking an AI chatbot to give a rundown on Napoleonic wars is fine. But using a chatbot service for a therapy session?

Even ChatGPT suggests going to a traditional mental health practitioner when you pour your heart out to the AI – perhaps because the most important element of therapy is the client-therapist relationship.

May 19, 2023

A bit long, but a good read

Posted by in categories: biotech/medical, education, evolution, genetics, media & arts, mobile phones, nanotechnology, neuroscience, Ray Kurzweil, singularity

Ago when I was a kid in college my friend Eric got me into many things. We played music together and used a Kurzweil Keyboard, and a bunch of weird stuff. We had an ADAT hooked up to the Kurzweil with fiber optic cables. I had Roland keyboards & Drum machines but I loved the Kurzweil. He started teaching me many things because he was really smart. I was studying psychology so he loaned me his DSMIV and books on Industrial Organiza… See more.

A bit long, but a good read. About 20 years ago when I was a kid in college my friend Eric got me into many things. We played music together and used a Kurzweil Keyboard, and a bunch of weird stuff. We had an ADAT hooked up to the Kurzweil with fiber optic cables. I had Roland keyboards & Drum machines but I loved the Kurzweil. He started teaching me many things because he was really smart. I was studying psychology so he loaned me his DSMIV and books on Industrial Organizational Psychology. He then told me about other books like “Society of Mind”(Marvin Minsky), “Age of Intelligent Machine” (Ray Kurzweil), Engines of Creation (K Eric Drexler), of course Richard Feynman, and many more. I dreamed of that technology and kept reading more. In the 2000’s Drexler and Feynman’s visions became a paradign and applications started rolling out, and now nanotechnology is applied to most everything we know. We are now at the second paradigm where we see the visions of Minsky/McCarthy, Kurzweil and others becoming easily available applications. As a Child I watched the Jetsons & Srar Trek and now with flying cars it’s not if, but when. Space travel is already here. All these technologies will transform global societies, but we must all focus on investing more in the advancement of society than the destruction of it. Many of the things we now invision in our minds we may see in 10 years. People think saving your consciousness & longevity is impossible, but I don’t. Some even thought that regenerating tissue and organs is impossible, but we can do that now. Now people keep saying, “This ancient turtle died, this rhino died (I hear that all the time in Kenya), this elephant died, but I say okay it’s not cool, but what can we salvage from it to bring the species back with advances in technology later? Do we use cryogenics? How do we save the genetic material? Technology can be used in so many ways. Every Day Lifeboat posts feats many do not know. If more people on earth had such a focus, as opposed to dumbed down entertainment like The Kardashians for instance, we would be living in a much better world with more people proposing more ideas and collaborations. I always say we are moving in the wrong way in the evolutionary process, and it is a bit telling that some phones are smarter than many people. I you add ChatGPT. We have so much advanced technology and science, yet we can’t even fight cancer. It took decades for people to learn the importance of diet in HIV treatment. However, Ray Kurzweil has for decades talked about the importance of diet for longevity. Just the other day it was published that processed foods affect cognitive function. Before that it was released processed foods cause cancer. We must change, and go in the right way of evolution to the Singularity another paradigm shift and cooperarion, instead of backwards to a barbaric age of conflict and greed. Always share your knowledge and I thank all who do share in this group. More should share as well, and Lifeboat should use more platforms to reach more people.

May 18, 2023

40 Hz vibrations reduce Alzheimer’s pathology, symptoms in mouse models

Posted by in categories: biotech/medical, life extension, neuroscience

Evidence that non-invasive sensory stimulation of 40 Hz gamma frequency brain rhythms can reduce Alzheimer’s disease pathology and symptoms, already shown with light and sound by multiple research groups in mice and humans, now extends to tactile stimulation. A new study by MIT scientists shows that Alzheimer’s model mice exposed to 40 Hz vibration an hour a day for several weeks showed improved brain health and motor function compared to untreated controls.

The MIT group is not the first to show that gamma frequency can affect and improve , but they are the first to show that the can also reduce levels of the hallmark Alzheimer’s protein phosphorylated tau, keep neurons from dying or losing their synapse circuit connections, and reduce neural DNA damage.

“This work demonstrates a third sensory modality that we can use to increase gamma power in the brain,” said Li-Huei Tsai, corresponding author of the study, director of The Picower Institute for Learning and Memory and the Aging Brain Initiative at MIT, and Picower Professor in the Department of Brain and Cognitive Sciences (BCS).

May 18, 2023

Scientists create super-intelligent mice, discover they’re also very laid-back

Posted by in categories: biotech/medical, genetics, neuroscience

Year 2015 face_with_colon_three


The genetically modified super-smart mice also proved to suffer less from anxiety, the scientists found.

For all that science has decoded the human genome, we don’t actually know what most of our DNA does, or even what a great many of our genes do. One way to elucidate what a gene does is to change it (mutate it) and see what happens.

Continue reading “Scientists create super-intelligent mice, discover they’re also very laid-back” »

May 18, 2023

Our Universe Exists Inside Of A Black Hole Of Higher Dimensional Universe

Posted by in categories: cosmology, neuroscience, quantum physics, singularity

This may sound like a science fiction scenario, but some physicists have proposed that this could be the case. In this article, we will explore the idea that our universe may be inside of a black hole, and what implications this would have for our understanding of cosmology and physics.

A black hole is a region of space where gravity is so strong that nothing can escape, not even light. According to Einstein’s theory of general relativity, black holes are formed when massive stars collapse at the end of their life cycle. The resulting singularity is a point of infinite density and zero volume, where the laws of physics break down.

Scientists discover possible connection between human brain and cosmos on a quantum scale.

May 18, 2023

Man Creates Edible Water “Jelly Drops” to Help Dementia Patients Stay Hydrated

Posted by in categories: biotech/medical, food, neuroscience

When London-based student Lewis Hornby noticed that his dementia-afflicted grandmother was having trouble staying hydrated, he came up with Jelly Drops, bite-sized pods of edible water made with gelling agents and electrolytes.

May 18, 2023

Ancient gene linkages support ctenophores as sister to other animals

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

As sponges and ctenophores are such disparate animals13, the nature of the first diverging animal lineage has implications for the evolution of fundamental animal characteristics. Adult sponges are generally sessile filter-feeding organisms with body plans organized into reticulated water-filtration channels, structures built out of silica or calcium carbonate, and specialized cell types and tissues used for feeding, reproduction and self-defence, but they lack neuronal and muscle cells15. By contrast, ctenophores are gelatinous marine predators that move using eight longitudinal ‘comb rows’ of ciliary bundles16,17; they are superficially similar but unrelated to cnidarian medusae13,18 and possess multiple nerve nets19. Thus, whereas the sponge-sister scenario suggests a single origin of neurons on the ctenophore–parahoxozoan stem, the ctenophore-sister scenario implies either that either ancestral metazoan neurons were lost in the sponge lineage, or that there was convergent evolution of neurons in the ctenophore and parahoxozoan lineages3,6. Similar considerations apply to other metazoan cell types18, gene regulatory networks, animal development13,18 and other uniquely metazoan features.

Despite its importance for understanding animal evolution, the relative branching order of sponges, ctenophores and other animals has proven to be difficult to resolve2. The fossil record is largely silent on this issue as verified Precambrian sponge fossils are extremely rare20 and putative fossils of the soft-bodied ctenophores are difficult to interpret21. Morphological characters of living groups (for example, choanocytes of sponges) are not sufficient to resolve the question because true homology is difficult to assign, and such characters are easily lost or can arise convergently13,22. The ctenophore-sister hypothesis is supported by a pair of gene duplications shared by sponges, bilaterians, placozoans and cnidarians but not ctenophores23. Although sophisticated methods for sequence-based phylogenomics have been developed and applied to increasingly large molecular datasets, there is still considerable debate about the relative position of sponges and ctenophores as results are sensitive to how sequence evolution is modelled11, which taxa or sites are included24,25, and the effects of long-branch artifacts and nucleotide compositional variation26. New approaches are needed.

We reasoned that patterns of synteny, classically defined as chromosomal gene linkage without regard to gene order27, could provide a powerful tool for resolving the ctenophore-sister versus sponge-sister debate. Chromosomal patterns of gene linkage evolve slowly in many lineages12,28,29,30, probably because it is improbable for interchromosomal translocations to be fixed in populations with large effective population sizes28,31,32. Notably, some changes in synteny are effectively irreversible. For example, when two distinct ancestral synteny groups are combined onto a single chromosome by translocation, and subsequent intrachromosomal rearrangements mix these two groups of genes, it is very unlikely that the ancestral separated pattern will be restored by further rearrangement and fission, in the same sense that spontaneous reduction in entropy is improbable12. Such rare and irreversible changes are particularly useful for resolving challenging phylogenetic questions as they give rise to shared derived features that unambiguously unite all descendant lineages33,34,35. Deeply conserved syntenies observed between animals and their closest unicellular relatives12 suggest that outgroup comparisons could be used to infer ancestral metazoan states and polarize changes within animals to address the sponge-sister versus ctenophore-sister debate. Yet, chromosome-scale genome sequences of the unicellular or colonial eukaryotic outgroups closest to animals (choanoflagellates, filastereans and ichthyosporeans) have not been reported.

Page 290 of 1,015First287288289290291292293294Last