Menu

Blog

Archive for the ‘nanotechnology’ category: Page 290

Jan 13, 2016

DNA ‘lock and key’ allows for precision drug delivery to target cancer and other cells

Posted by in categories: biotech/medical, nanotechnology

DNA-based lock-and-key pore design allows for precision delivery of drugs to cancer and other cells (credit: Stefan Howorka and Jonathan Burns/UCL)

Scientists at University College London (UCL) and Nanion Technologies in Munich have developed synthetic DNA-based pores that control which molecules can pass through a cell’s wall, achieving more precise drug delivery.

Therapeutics, including anti-cancer drugs, are ferried around the body in nanoscale carriers called vesicles, targeted to different tissues using biological markers. The new DNA-based pore design is intended to improve that process.

Read more

Jan 10, 2016

The health risks of spending a year in outer space

Posted by in categories: biotech/medical, business, health, materials, nanotechnology, space

As we explore opportunities in space to colonized or even expand business opportunities in space such as mining, and discovering materials that could be brought back to earth to use; it will be important for scientists and researchers to look at ways in how technologies like CRISPR, nanobots, synthetic implants, etc. can assist in mitigating the impacts on humans in space.


A new report commissioned by NASA highlights many of the risks connected with one of the agency’s major goals: putting more humans in space for longer periods of time.

Read more

Jan 9, 2016

Researchers gauge quantum properties of nanotubes, essential for next-gen electronics

Posted by in categories: computing, electronics, materials, nanotechnology, quantum physics

Loving the progress around Quantum.


Today, a group of scientists — John A. Rogers, Eric Seabron, Scott MacLaren and Xu Xie from the University of Illinois at Urbana-Champaign; Slava V. Rotkin from Lehigh University; and, William L. Wilson from Harvard University — are reporting on the discovery of an important method for measuring the properties of nanotube materials using a microwave probe. Their findings have been published in ACS Nano in an article called: “Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.”

The researchers studied single-walled carbon nanotubes. These are 1-dimensional, wire-like nanomaterials that have electronic properties that make them excellent candidates for next generation electronics technologies. In fact, the first prototype of a nanotube computer has already been built by researchers at Stanford University. The IBM T.J. Watson Research Center is currently developing nanotube transistors for commercial use.

Continue reading “Researchers gauge quantum properties of nanotubes, essential for next-gen electronics” »

Jan 9, 2016

Researchers discover new fundamental quantum mechanical property

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Too cool.


Nanotechnologists at the University of Twente research institute MESA+ have discovered a new fundamental property of electrical currents in very small metal circuits. They show how electrons can spread out over the circuit like waves and cause interference effects at places where no electrical current is driven. The geometry of the circuit plays a key role in this so called nonlocal effect. The interference is a direct consequence of the quantum mechanical wave character of electrons and the specific geometry of the circuit. For designers of quantum computers, it is an effect to take account of. The results are published in the British journal Scientific Reports.

Interference is a common phenomenon in nature and occurs when one or more propagating waves interact coherently. Interference of sound, light or water waves is well known, but also the carriers of electrical current — electrons — can interfere. It shows that electrons need to be considered as waves as well, at least in nanoscale circuits at extremely low temperatures: a canonical example of the quantum mechanical wave-particle duality.

Continue reading “Researchers discover new fundamental quantum mechanical property” »

Jan 9, 2016

Science Documentary: DNA Hard Drives, Quantum Computing, Moore’s Law

Posted by in categories: computing, education, materials, nanotechnology, particle physics, quantum physics, science, security

DNA is similar to a hard drive or storage device, in that contains the memory of each cell of every living, and has the instructions on how to make that cell. DNA is four molecules combined in any order to make a chain of one larger molecule. And if you can read that chain of four molecules, then you have a sequence of characters, like a digital code. Over the years the price of sequencing a human genome has dropped significantly, much to the delight of scientists. And since DNA is a sequence of four letters, and if we can manipulate DNA, we could insert a message and use DNA as the storage device.

At this point in time, we are at the height of the information age. And computers have had an enormous impact on all of our lives. Any information is able to be represented as a collection of bits. And with Moore’s law, which states that computing power doubles every 18 months, our ability to manipulate and store these bits has continued to grow and grow. Moore’s law has been driven by scientists being able to make transistors and integrated circuits continuously smaller and smaller, but there eventually comes a point we reach in which these transistors and integrated circuits cannot be made any smaller than they already are, since some are already at the size of a single atom. This inevitably leads us into the quantum world. Quantum mechanics has rules which are, in many ways, hard for us to truly comprehend, yet are nevertheless tested. Quantum computing looks to make use of these strange rules of quantum physics, and process information in a totally different way. Quantum computing looks to replace the classical bits which are either a 0 or a 1, with quantum bits, or qubits, which can be both a 0 and a 1 at the same time. This ability to be two different things at the same time is referred to as a superposition. 200 qubits hold more bits of information than there are particles in the universe. A useful quantum computer will require thousands or even millions of physical qubits. Anything such as an atom can serve as a quantum bit for making a quantum computer, then you can use a superconducting circuit to build two artificial atoms. So at this point in time we have a few working quantum transistors, but scientists are working on developing the quantum integrated circuit. Quantum error correction is the biggest problem encountered in development of the quantum computer. Quantum computer science is a field that right now is in its very early stages, since scientists have yet been able to develop any quantum hardware.

Continue reading “Science Documentary: DNA Hard Drives, Quantum Computing, Moore’s Law” »

Jan 3, 2016

DARPA Backs Atoms-to-Products Milestone

Posted by in categories: engineering, materials, nanotechnology, particle physics, quantum physics

DARPA funds the Atoms-to-Products program that aims to maintain quantum nanoscale properties at the millimeter scale of microchips.

The main goal of the atoms-to-products program is to create technology and processes needed to create nanometer-scale pieces, with dimensions almost the size of atoms, into components and materials only millimeter scale in size. And to spur developments in the program DARPA has now posed the challenge to 10 laboratories across the nation.

To get the full benefits of nanoscale engineering at the millimeter scale, the organization has partnered with Intelligent Materials Solutions. “Our initial project will be to control infrared light by assembling nanoscale particles into finished components that are one million times larger,” explains Adam Gross, the team leader working closely with Christopher Roper to bring the Atoms-to Products project to fruition.

Read more

Jan 3, 2016

Superhumans Soon Created by Nanotechnology

Posted by in category: nanotechnology

https://youtube.com/watch?v=iXcfm10bvZo

If nanotechnology continues to advance as experts expect, within 30 years it could give us ‘superhuman’ abilities. For example, we could survive for hours without needing to breathe.

Read more

Dec 29, 2015

DNA nanobots will target cancer cells in the first human trial using a terminally ill patient

Posted by in categories: biotech/medical, health, nanotechnology, robotics/AI

https://lifeboat.com/blog.images/dna-nanobots-will-target-ca...tient.jpg">

BY: DANIEL KORN

The very mention of “nanobots” can bring up a certain future paranoia in people—undetectable robots under my skin? Thanks, but no thanks. Professor Ido Bachelet of Israel’s Bar-Ilan University confirms that while tiny robots being injected into a human body to fight disease might sound like science fiction, it is in fact very real.

Cancer treatment as we know it is problematic because it targets a large area. Chemo and radiation therapies are like setting off a bomb—they destroy cancerous cells, but in the process also damage the healthy ones surrounding it. This is why these therapies are sometimes as harmful as the cancer itself. Thus, the dilemma with curing cancer is not in finding treatments that can wipe out the cancerous cells, but ones that can do so without creating a bevy of additional medical issues. As Bachelet himself notes in a TEDMED talk: “searching for a safer cancer drug is basically like searching for a gun that kills only bad people.”

Read more

Dec 26, 2015

Part 1: Entrepreneur & Researcher Robert Bradbury

Posted by in categories: bioengineering, biotech/medical, computing, life extension, nanotechnology, neuroscience

This came up recently and it occurred I never posted this here. This is a lecture by Robert Bradbury, not not Ray Bradbury. I had the pleasure of exchanging a few emails with him. Unfortunately those emails are lost so I cannot share them. He was an advocate of life extension and he was a big thinker. I’ll post both vids and a link to the M-brain page. He is not with us anymore I regret to say. Ready?


Renown aging expert Robert Bradbury discusses whole genome engineering, evolution and aging and ways to defeat aging. His talk touches on many areas including nanotechnology, biology, and computer science. More information can be found at http://manhattanbeachproject.com Follow updates at http://twitter.com/maxlifeorg

Read more

Dec 24, 2015

How MacArthur Genius Peidong Yang Uses Nanowires and Bacteria to Make the Ultimate Clean Fuel

Posted by in categories: energy, nanotechnology

A nanomaterials chemist has figured out a good way to mimic leaves and turn water and carbon dioxide into things we need.

Read more