Menu

Blog

Archive for the ‘nanotechnology’ category: Page 267

Sep 21, 2015

How Nanotechnology Could Re-engineer Us

Posted by in categories: biotech/medical, electronics, materials, nanotechnology

Nanotechnology promises significant advances in electronics, materials, biotechnology, alternative energy sources, and much more.

Read more

Sep 21, 2015

Nanogel Speeds Healing Process for Burn Victims

Posted by in categories: biotech/medical, nanotechnology

Got a nasty burn? Nanogel has you covered. Using the power of nanotechnology, this cutting-edge simply sprays burns away, and speeds the healing process.

Read more

Sep 20, 2015

5D optical memory in glass could record the last evidence of civilization

Posted by in category: nanotechnology

Using nanostructured glass, scientists at the University of Southampton have, for the first time, experimentally demonstrated the recording and retrieval processes of five dimensional digital data by femtosecond laser writing. The storage allows unprecedented parameters including 360 TB/disc data capacity, thermal stability up to 1000°C and practically unlimited lifetime.

Coined as the ‘Superman’ memory crystal, as the memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz, which is able to store vast quantities of data for over a million years. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

A 300 kb digital copy of a text file was successfully recorded in 5D using ultrafast laser, producing extremely short and of light. The file is written in three layers of nanostructured dots separated by five micrometres.

Read more

Sep 17, 2015

Making 3-D objects disappear: Researchers create ultrathin invisibility cloak

Posted by in categories: engineering, materials, nanotechnology

Invisibility cloaks are a staple of science fiction and fantasy, from Star Trek to Harry Potter, but don’t exist in real life, or do they? Scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have devised an ultra-thin invisibility “skin” cloak that can conform to the shape of an object and conceal it from detection with visible light. Although this cloak is only microscopic in size, the principles behind the technology should enable it to be scaled-up to conceal macroscopic items as well.

Working with brick-like blocks of gold nanoantennas, the Berkeley researchers fashioned a “skin cloak” barely 80 nanometers in thickness, that was wrapped around a three-dimensional object about the size of a few biological cells and arbitrarily shaped with multiple bumps and dents. The surface of the skin cloak was meta-engineered to reroute reflected waves so that the object was rendered invisible to optical detection when the cloak is activated.

“This is the first time a 3D object of arbitrary shape has been cloaked from ,” said Xiang Zhang, director of Berkeley Lab’s Materials Sciences Division and a world authority on metamaterials — artificial nanostructures engineered with electromagnetic properties not found in nature. “Our ultra-thin cloak now looks like a coat. It is easy to design and implement, and is potentially scalable for hiding macroscopic objects.”

Read more

Sep 16, 2015

Nanodiamonds Formed In A Carbon Cage

Posted by in category: nanotechnology

Scientists have successfully synthesized diamond-like nanomaterials in the hollow of a carbon nanotube.

| September 16, 2015 | In the Lab.

Read more

Sep 16, 2015

New Solar Panels That Work At Night

Posted by in categories: materials, nanotechnology, solar power, sustainability

Nighttime solar panels, night solar panels, night photovoltaics, Solar cells, solar power at night, idaho national laboratory, solar technology, solar film, nanotechnology solar, nanoantennas, New Solar Panels Can Harvest Energy After Dark

Despite the enormous untapped potential of solar energy, one thing is for sure- photovoltaics are only as good as the sun’s rays shining upon them. However, researchers at the Idaho National Laboratory are close to the production of a super-thin solar film that would be cost-effective, imprinted on flexible materials, and would be able to harvest solar energy even after sunset!

Read more

Sep 15, 2015

Nanoscale Solar Cells Outperform Traditional Technology

Posted by in categories: computing, information science, materials, nanotechnology, solar power, sustainability

Scientists have designed a novel type of nanoscale solar cell. Initial studies and computer modelling predict these cells will outperform traditional solar panels, reach power conversion levels by over 40 percent.

Solar power cells work through the conversion of sunlight into electricity using photovoltaics. Here solar energy is converted into direct current. A photovoltaic system uses several solar panels; with each panel composed of a number of solar cells. This combines to create a system for the supply usable solar power.

To investigate what is possible in terms of solar power, the researchers have examined the Shockley-Queisser limit for different materials. This equation describes the maximum solar energy conversion efficiency achievable for a particular material, allowing different materials to be compared as candidates for power generation.

Read more

Sep 14, 2015

Getting DNA Into Cells Is Tough, But This Nanoinjector Is Here To Help

Posted by in categories: biotech/medical, nanotechnology

Click on photo to start video.

One of gene therapy’s major challenges is getting a gene sequence into a cell without damaging it. Traditional methods are often inefficient and unreliable, but this nano-device from Brigham Young University may offer a solution.

Read more

Sep 12, 2015

Humans Will Have Cloud-Connected Hybrid Brains

Posted by in categories: biotech/medical, computing, engineering, nanotechnology, Ray Kurzweil, robotics/AI

So, you think you’ve seen it all? You haven’t seen anything yet. By the year 2030, advancements will excel anything we’ve seen before concerning human intelligence. In fact, predictions offer glimpses of something truly amazing – the development of a human hybrid, a mind that thinks in artificial intelligence.

Ray Kurzweil, director of engineering at Google, spoke openly about this idea at the Exponential Finance Conference in New York. He predicts that humans will have hybrid brains able to connect to the cloud, just as with computers. In this cloud, there will be thousands of computers which will update human intelligence. The larger the cloud, the more complicated the thinking. This will all be connected using DNA strands called Nanobots. Sounds like a Sci-Fi movie, doesn’t it?

Kurzweil says:

Read more

Sep 12, 2015

How curly nanowires can absorb more light to power nanoscale electronic circuits

Posted by in categories: electronics, energy, materials, nanotechnology, solar power, sustainability

This illustration shows a prototype device comprising bare nanospring photodetectors placed on a glass substrate, with metal contacts to collect charges (credit: Tural Khudiyev and Mehmet Bayindir/Applied Optics)

Researchers from Bilkent University, Ankara, Turkey, have shown that twisting straight nanowires into springs can increase the amount of light the wires absorb by up to 23 percent. Absorbing more light is important because one application of nanowires is turning light into electricity, for example, to power tiny sensors instead of requiring batteries.

If nanowires are made from a semiconductor like silicon, light striking the wire will dislodge electrons from the crystal lattice, leaving positively charged “holes” behind. Both the electrons and the holes move through the material to generate electricity. The more light the wire absorbs; the more electricity it generates. (A device that converts light into electricity can function as either a solar cell or a photosensor.)

Read more