Menu

Blog

Archive for the ‘nanotechnology’ category: Page 235

Jul 13, 2018

Method of making oxygen from water in zero gravity raises hope for long-distance space travel

Posted by in categories: nanotechnology, space travel

In the new study, the researchers dropped the full experimental set up for photocatalysis down a 120m drop tower, creating an environment similar to microgravity. As objects accelerate towards Earth in free fall, the effect of gravity diminishes as forces exerted by gravity are cancelled out by equal and opposite forces due to the acceleration. This is opposite to the G forces experienced by astronauts and fighter pilots as they accelerate in their aircraft.

The researchers managed to show that it is indeed possible to split water in this environment. However, as water is split to create gas, bubbles form. Getting rid of bubbles from the catalyst material once formed is important – bubbles hinder the process of creating gas. On Earth, gravity makes the bubbles automatically float to the surface (the water near the surface is denser than the bubbles, which makes them buyonant) – freeing the space on the catalyst for the next bubble to be produced.

In zero gravity this is not possible and the bubble will remain on or near the catalyst. However, the scientists adjusted the shape of nanoscale features in the catalyst by creating pyramid-shaped zones where the bubble could easily disengage from the tip and float off into the medium.

Continue reading “Method of making oxygen from water in zero gravity raises hope for long-distance space travel” »

Jul 13, 2018

Nanomaterials that mimic nerve impulses (spikes) discovered

Posted by in categories: computing, nanotechnology, neuroscience

Nanomaterials that mimic nerve impulses (credit: Osaka University)

A combination of nanomaterials that can mimic nerve impulses (“spikes”) in the brain have been discovered by researchers at Kyushu Institute of Technology and Osaka University in Japan.

Current “neuromorphic” (brain-like) chips (such as IBM’s neurosynaptic TrueNorth) and circuits (such as those based on the NVIDIA GPGPU, or general purpose graphical processing unit) are devices based on complex circuits that emulate only one part of the brain’s mechanisms: the learning ability of synapses (which connect neurons together).

Continue reading “Nanomaterials that mimic nerve impulses (spikes) discovered” »

Jul 11, 2018

Report on the 11th Annual Concertation and Consultation Workshop on Micro-Nano-Bio-Systems: MNBS 2017

Posted by in categories: biotech/medical, nanotechnology

This report covers the 11th edition of the EU-funded MicroNanoBio Systems cluster annual MNBS Bioelectronics Workshop, which took place in Amsterdam at the Beurs van Berlage on 12th-13th December 2017 and was included as part of the International Micro Nano Conference 2017, of which the main topics were Microfluidics and Analytical Systems, Fabrication and Characterization at the Nanoscale, and Organ-on-a-Chip.

Finger touching electronics board

Read more

Jul 10, 2018

Carbon nanotubes used to develop clothing that can double as batteries

Posted by in categories: engineering, military, nanotechnology

Move over, Iron Man.

What makes this possible are the unique properties of carbon nanotubes: a large surface area that is strong, conductive and heat-resistant.

UC’s College of Engineering and Applied Science has a five-year agreement with the Air Force Research Laboratory to conduct research that can enhance military technology applications.

Continue reading “Carbon nanotubes used to develop clothing that can double as batteries” »

Jul 9, 2018

Non-von Neumann zettaFLOPS supercomputers, yottaFLOPS cryogenic supercomputers and beyond with molecular nanotechnology

Posted by in categories: nanotechnology, supercomputing

Thomas Sterling has retracted his prediction that we will never reach ZettaFLOP computers. He now predicts zettaFLOPS can be achieved in less than 10 years if innovations in non-von Neumann architecture can be scaled. With a change to cryogenic technologies, we can reach yottaFLOPS by 2030.

Read more

Jul 6, 2018

High-power thermoelectric generator utilizes thermal difference of only 5C

Posted by in categories: internet, nanotechnology, robotics/AI, wearables

A team of Japanese researchers from Waseda University, Osaka University, and Shizuoka University designed and successfully developed a high-power, silicon-nanowire thermoelectric generator which, at a thermal difference of only 5 degrees C, could drive various IoT devices autonomously in the near future.

Objects in our daily lives, such as speakers, refrigerators, and even cars, are becoming “smarter” day by day as they connect to the internet and exchange data, creating the Internet of Things (IoT), a network among the objects themselves. Toward an IoT-based society, a miniaturized is anticipated to charge these objects, especially for those that are portable and wearable.

Due to advantages such as its relatively low thermal conductance but high electric conductance, have emerged as a promising thermoelectric material. Silicon-based thermoelectric generators conventionally employed long, nanowires of about 10–100 nanometers, which were suspended on a cavity to cutoff the bypass of the heat current and secure the temperature difference across the silicon nanowires. However, the cavity structure weakened the mechanical strength of the devices and increased the fabrication cost.

Continue reading “High-power thermoelectric generator utilizes thermal difference of only 5C” »

Jul 6, 2018

New world record for direct solar water-splitting efficiency

Posted by in categories: nanotechnology, solar power, sustainability

Hydrogen will play a central role as a storage medium in sustainable energy systems. An international team of researchers has now succeeded in raising the efficiency of producing hydrogen from direct solar water-splitting to a record 19 percent. They did so by combining a tandem solar cell of III-V semiconductors with a catalyst of rhodium nanoparticles and a crystalline titanium dioxide coating. Teams from the California Institute of Technology, the University of Cambridge, Technische Universität Ilmenau, and the Fraunhofer Institute for Solar Energy Systems ISE participated in the development work. One part of the experiments took place at the Institute for Solar Fuels in the Helmholtz-Zentrum Berlin.

Photovoltaics are a mainstay of renewable-energy supply systems, and sunlight is abundantly available worldwide – but not around the clock. One solution for dealing with this fluctuating power generation is to store sunlight in the form of chemical energy, specifically by using sunlight to produce hydrogen. This is because hydrogen can be stored easily and safely, and used in many ways – whether in a fuel cell to directly generate electricity and heat, or as feedstock for manufacturing combustible fuels. If you combine solar cells with catalysts and additional functional layers to form a “monolithic photoelectrode” as a single block, then splitting water becomes especially simple: the photocathode is immersed in an aqueous medium and when light falls on it, hydrogen is formed on the front side and oxygen on the back.

Read more

Jul 3, 2018

Nanotechnology Takes Giant Leap Foward

Posted by in categories: nanotechnology, particle physics

Scientists have been able to move atoms around for 30 years, but moving molecules has proven much more difficult.

Read more

Jun 29, 2018

Electricity from germs could be the next big thing, say Israeli researchers

Posted by in categories: biotech/medical, engineering, habitats, nanotechnology, nuclear energy, solar power, sustainability

You can generate electricity from oil, you can produce it from natural gas, you can make it from nuclear energy, and you can channel it from the sun, via solar energy conversion systems. You can even generate electricity from photosynthetic bacteria, also known as cyanobacteria, based on a new innovation developed at the Technion. As published in a study in the journal, Nature Communications, the Technion researchers have developed an energy-producing system that exploits both the photosynthesis and respiratory processes that cyanobacteria undergo, with the harvested energy leveraged to generate electricity based on hydrogen.

The study was conducted by three Technion faculty members: Professor Noam Adir from the Schulich Faculty of Chemistry, Professor Gadi Schuster from the Faculty of Biology, and Professor Avner Rothschild, from the Faculty of Materials Science and Engineering. The work involved collaboration between Dr. Gadiel Saper and Dr. Dan Kallmann, as well as colleagues from Bochum, Germany and the Weizmann Institute of Science. It was supported by various bodies, including the Nancy and Stephen Grand Technion Energy Program (GTEP), the Russell Berrie Nanotechnology Institute (RBNI), the Technion Hydrogen Technologies Research Lab (HTRL), the Adelis Foundation, the Planning and Budgeting Committee’s I-CORE program, the Israel Science Foundation, the USA-Israel Binational Science Fund (BSF) and the German research fund (DFG-DIP).

Scientists have long considered cyanobacteria a possible energy source. Cyanobacteria belong to a family of bacteria common to lakes, seas, and many other habitats. The bacteria use photosynthetic mechanisms that enable them to generate energy from sunlight. They also generate energy in the dark, via respiratory mechanisms based on digestion and degradation of sugar.

Continue reading “Electricity from germs could be the next big thing, say Israeli researchers” »

Jun 28, 2018

Russian scientists 3D printing biological tissues with magnets in microgravity

Posted by in categories: 3D printing, bioprinting, biotech/medical, nanotechnology

3D bioprinting is a process for patterning and assembling complex functional living architectures in a gradient fashion. Generally, 3D bioprinting utilizes the layer-by-layer method to deposit materials known as bioinks to create tissue-like structures. Several 3D bioprinting techniques have been developed over the last decade, for example, magnetic bioprinting, a method that employs biocompatible magnetic nanoparticles to print cells into 3D structures.

But now a Russian research team has developed a new method of bioprinting that allows to create 3D biological objects without the use of layer-by-layer approach and magnetic labels. The new method, which involves magnetic levitation research in conditions of microgravity, was conducted by the 3D Bioprinting Solutions company in collaboration with other Russian and foreign scientists, including the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS).

Continue reading “Russian scientists 3D printing biological tissues with magnets in microgravity” »