Menu

Blog

Archive for the ‘nanotechnology’ category: Page 166

Jan 11, 2021

Researchers develop new one-step process for creating self-assembled metamaterials

Posted by in categories: biotech/medical, chemistry, nanotechnology

A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials. Their results show the realistic possibility of designing similar self-assembled structures with the potential of creating “built-to-order” nanostructures for wide application in electronics and optical devices.

The research was published and featured on the cover of Nano Letters, a peer-reviewed scientific journal published by the American Chemical Society.

In general, metamaterials are made in the lab so as to provide specific physical, chemical, electrical, and optical properties otherwise impossible to find in naturally occurring materials. These materials can have which make them ideal for a variety of applications from optical filters and medical devices to aircraft soundproofing and infrastructure monitoring. Usually these nano-scale materials are painstakingly produced in a specialized clean room environment over days and weeks in a multi-step fabrication process.

Jan 11, 2021

NIST publishes a beginner’s guide to DNA origami

Posted by in categories: biotech/medical, nanotechnology

In a technique known as DNA origami, researchers fold long strands of DNA over and over again to construct a variety of tiny 3D structures, including miniature biosensors and drug-delivery containers. Pioneered at the California Institute of Technology in 2006, DNA origami has attracted hundreds of new researchers over the past decade, eager to build receptacles and sensors that could detect and treat disease in the human body, assess the environmental impact of pollutants, and assist in a host of other biological applications.

Although the principles of DNA are straightforward, the technique’s tools and methods for designing new structures are not always easy to grasp and have not been well documented. In addition, scientists new to the method have had no single reference they could turn to for the most efficient way of building DNA structures and how to avoid pitfalls that could waste months or even years of research.

That’s why Jacob Majikes and Alex Liddle, researchers at the National Institute of Standards and Technology (NIST) who have studied DNA origami for years, have compiled the first detailed tutorial on the technique. Their comprehensive report provides a step-by-step guide to designing DNA origami nanostructures, using state-of-the-art tools. Majikes and Liddle described their work in the Jan .8 issue of the Journal of Research of the National Institute of Standards and Technology.

Jan 9, 2021

Nanoparticle vaccine for COVID-19

Posted by in categories: biotech/medical, nanotechnology

Before the pandemic, the lab of Stanford University biochemist Peter S. Kim focused on developing vaccines for HIV, Ebola and pandemic influenza. But, within days of closing their campus lab space as part of COVID-19 precautions, they turned their attention to a vaccine for SARS-CoV-2, the virus that causes COVID-19. Although the coronavirus was outside the lab’s specific area of expertise, they and their collaborators have managed to construct and test a promising vaccine candidate.

“Our goal is to make a single-shot vaccine that does not require a cold-chain for storage or transport. If we’re successful at doing it well, it should be cheap too,” said Kim, who is the Virginia and D. K. Ludwig Professor of Biochemistry. “The target population for our vaccine is low-and middle-income countries.”

Their vaccine, detailed in a paper published in ACS Central Science (“A Single Immunization with Spike-Functionalized Ferritin Vaccines Elicits Neutralizing Antibody Responses against SARS-CoV-2 in Mice”), contains nanoparticles studded with the same proteins that comprise the virus’s distinctive surface spikes.

Jan 9, 2021

Are We Living in the Dark Forest? | Unveiled

Posted by in categories: alien life, existential risks, nanotechnology

I think the larger the galactic population the more deterrence will be a factor of survival. IMO the key apparatus for survival is not only nanotechnology on a personal level but to become Dysonian so we have the energy for defense.


In this video, Unveiled takes a terrifying journey into the Dark Forest! Why don’t you come along??

Continue reading “Are We Living in the Dark Forest? | Unveiled” »

Jan 9, 2021

Engineers find antioxidants improve nanoscale visualization of polymers

Posted by in categories: chemistry, computing, engineering, nanotechnology, solar power, sustainability

Reactive molecules, such as free radicals, can be produced in the body after exposure to certain environments or substances and go on to cause cell damage. Antioxidants can minimize this damage by interacting with the radicals before they affect cells.

Led by Enrique Gomez, professor of chemical engineering and and engineering, Penn State researchers have applied this concept to prevent imaging damage to conducting polymers that comprise soft electronic devices, such as , organic transistors, bioelectronic devices and flexible electronics. The researchers published their findings in Nature Communications today (Jan. 8).

According to Gomez, visualizing the structures of conducting polymers is crucial to further develop these materials and enable commercialization of soft electronic devices—but the actual imaging can cause damage that limits what researchers can see and understand.

Jan 8, 2021

The World’s First Quantum Phase Battery Is Here

Posted by in categories: computing, nanotechnology, quantum physics

O,.o circa 2020.


Their quantum phase battery consists of an n-doped InAs nanowire forming the core of the battery (the pile) and Al superconducting leads as poles. It is charged by applying an external magnetic field, which then can be switched off.

Cristina Sanz-Fernández and Claudio Guarcello, also from CFM, adapted the theory to simulate the experimental findings.

Continue reading “The World’s First Quantum Phase Battery Is Here” »

Jan 8, 2021

Fast transport in carbon nanotube membranes could advance human health

Posted by in categories: biotech/medical, health, nanotechnology

Lawrence Livermore National Laboratory (LLNL) researchers have discovered that carbon nanotube membrane pores could enable ultra-rapid dialysis processes that would greatly reduce treatment time for hemodialysis patients.

The ability to separate molecular constituents in complex solutions is crucial to many biological and man-made processes. One way is via the application of a concentration gradient across a . This drives ions or molecules smaller than the diameters from one side of the to the other while blocking anything that is too large to fit through the pores.

In nature, such as those in the kidney or liver can perform complex filtrations while still maintaining high throughput. Synthetic membranes, however, often struggle with a well-known trade-off between selectivity and permeability. The same that dictate what can and cannot pass through the membrane inevitably reduce the rate at which filtration can occur.

Jan 7, 2021

Researchers Microwave Coal Powder Into Nano-Graphite

Posted by in category: nanotechnology

University of Wyoming researchers demonstrated their method using a traditional microwave oven. Read it here.

Jan 7, 2021

Building safer medical devices with innovative protective nanoparticle coating

Posted by in categories: biotech/medical, health, nanotechnology

Every year, over a million people develop health care-acquired infections during their hospital stays. And around 100000 of them die from those complications.

But researchers at the University of Georgia are determined to change that, and their new study shows a promising tool for preventing infections before they happen.

Continue reading “Building safer medical devices with innovative protective nanoparticle coating” »

Jan 7, 2021

Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time

Posted by in categories: nanotechnology, particle physics, quantum physics

A multitasking nanomachine that can act as a heat engine and a refrigerator at the same time has been created by RIKEN engineers. The device is one of the first to test how quantum effects, which govern the behavior of particles on the smallest scale, might one day be exploited to enhance the performance of nanotechnologies.

Conventional heat engines and refrigerators work by connecting two pools of fluid. Compressing one pool causes its fluid to heat up, while rapidly expanding the other pool cools its fluid. If these operations are done in a periodic cycle, the pools will exchange energy and the system can be used as either a heat engine or a fridge.

It would be impossible to set up a macroscale machine that does both tasks simultaneously—nor would engineers want to, says Keiji Ono of the RIKEN Advanced Device Laboratory. “Combining a traditional heat engine with a refrigerator would make it a completely useless machine,” he says. “It wouldn’t know what to do.”