Menu

Blog

Archive for the ‘materials’ category: Page 136

Jul 24, 2020

Fungus Growing at Chernobyl Could Protect Astronauts From Cosmic Rays

Posted by in category: materials

Easy Installation

The researchers also speculated about weaving some of the material into spacesuit fabric, New Scientist reports, but the main draw of their work is that damaged fungus shields would be able to grow back.

“What makes the fungus great is that you only need a few grams to start out,” Stanford researcher and study co-author Nils Averesch told New Scientist. “It self-replicates and self-heals, so even if there’s a solar flare that damages the radiation shield significantly, it will be able to grow back in a few days.”

Jul 24, 2020

A new MXene material shows extraordinary electromagnetic interference shielding ability

Posted by in categories: materials, physics

As we welcome wireless technology into more areas of life, the additional electronic bustle is making for an electromagnetically noisy neighborhood. In hopes of limiting the extra traffic, researchers at Drexel University have been testing two-dimensional materials known for their interference-blocking abilities. Their latest discovery, reported in the journal Science, is of the exceptional shielding ability of a new two-dimensional material that can absorb electromagnetic interference rather than just deflecting back into the fray.

The material, called carbonitride, is part of a family of , called MXenes, that were first produced at Drexel in 2011. Researchers have revealed that these materials have a number of exceptional properties, including impressive strength, and molecular filtration abilities. Titanium carbonitride’s exceptional trait is that it can block and absorb electromagnetic interference more effectively than any known material, including the metal foils currently used in most electronic devices.

“This discovery breaks all the barriers that existed in the electromagnetic shielding field. It not only reveals a shielding material that works better than copper, but it also shows an exciting, new physics emerging, as we see discrete two-dimensional materials interact with electromagnetic radiation in a different way than bulk metals,” said Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, who led the research group that made this MXene discovery, which also included scientists from the Korea Institute of Science and Technology, and students from Drexel’s co-op partnership with the Institute.

Jul 23, 2020

Why This Stuff Costs $2700 Trillion Per Gram — Antimatter at CERN

Posted by in categories: materials, particle physics

Physics Girl is on Patreon! ►► https://www.patreon.com/physicsgirl

There’s a factory in Europe that makes antimatter! It’s the rarest, most expensive, and potentially the most dangerous material on earth. Scientists don’t know why this material is so rare. Anti-atoms took 72 years after we discovered antimatter to make. Why?

Continue reading “Why This Stuff Costs $2700 Trillion Per Gram — Antimatter at CERN” »

Jul 20, 2020

Scientists boost stability and efficiency of next-gen solar tech

Posted by in category: materials

Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have created next-generation solar modules with high efficiency and good stability. Made using perovskites, these solar modules can maintain high performance for over 2000 hours. Their findings, reported 20 July 2020 in Nature Energy, have brightened prospects of commercialization.

Perovskites have the potential to revolutionize the solar technology industry. Flexible and lightweight, they promise more versatility than the heavy and rigid silicon-based cells currently dominating the market. But scientists must overcome some major hurdles before perovskites can be commercialized.

“There are three conditions that perovskites must meet: They must be cheap to produce, highly efficient and have a long lifespan,” said Professor Yabing Qi, head of the OIST Energy Materials and Surface Sciences Unit, who led this study.

Jul 20, 2020

A platinum and yttrium iron garnet-based structure produces a new magnetoresistance effect

Posted by in categories: materials, particle physics

In recent years, several research teams worldwide have been trying to develop a new class of devices known as spintronics or spin transport electronics. These devices can encode, store, process and transmit data using the spin of electrons in certain materials.

The operation of spintronics relies on magneto-transport effects, such as (GMR) and tunneling (TMR), which enable the transport of electrons through a given material in the form of a magnetic field. A device is generally made of two conductive ferromagnetic layers separated by a non-magnetic metal layer (i.e., a spin valve) or an insulator layer (i.e., a ).

Magneto-transport effects, which occur in a device’s spin valves and magnetic tunnel junctions, result in a relatively low resistance when the two magnetic layers are parallel and a relatively high resistance state when they are not. These effects are crucial to the functioning of many contemporary storage devices, including and magnetic random access memories (MRAMs).

Jul 20, 2020

Practical and versatile micro-patterning for organic electronics and photonics

Posted by in categories: computing, materials

Scientists have managed to draw at high resolution and speed, local patterns in organic semiconductor films used in optoelectronic and photonic applications. The new method enables the patterning of material characteristics and concomitant final properties, including molecular conformation, orientation, crystallinity and composition. The technique, published with open access in Nature Communications, has also been patented and industrial partners are sought for further co-development.

Bridging the gap between and the worldwide deployed silicon electronics requires new low cost and low energy consumption fabrication methods and technologies. This work represents a key enabling technology to accelerate the use of flexible and light-weight organic electronics and photonics to the level of silicon-based devices.

The microstructure and composition of organic semiconductors need to be tuned locally in order to optimize their properties, such as charge carrier mobility, electrical conductivity and light emission; and expand their functionalities for the practical upscaling of applications such as organic transistors (OFETs) and light emitting diodes (OLEDs), organic photovoltaics (OPV), organic thermoelectric generators (OTEGs), and organic photonic structures.

Jul 20, 2020

US20030067235A1 — Diamagnetic propulsion vehicle

Posted by in categories: materials, transportation

Omg levitating cars o,.o!


In this vehicle, the diamagnetic fields principles are applied to obtain a hovering and propulsion effect which makes low cost, friction free and zero pollutant emissions transport media. This is done using a special combination of electromagnetic and the natural diamagnetic susceptibility in all The physical effect of this is an air gap between the surface and the vehicle. The height of levitation has a direct relationship with the material used as floor surface; since all materials have diamagnetic susceptibility factors. Also, the power on the diamagnetic field is a key for the levitation and propulsion effect. All these factors make this prototype vehicle an easy maneuverable one, since there are almost no inertial forces in the system.

Jul 19, 2020

Scientists Create Room-Temperature All Liquid-Metal Batteries

Posted by in categories: energy, materials

A team from the Cockrell School of Engineering at the University of Texas at Austin have developed a new kind of battery that mixes the best of both worlds of liquid- and solid-state batteries. The design is the first all-liquid metal battery that can work at room temperature and is claimed to outperform lithium-ion batteries.

Liquid metal batteries are less susceptible to wearing out than solid batteries because dendrites don’t form and damage the components. The only downside is, most of these batteries need to be heated to at least 240°C (464°F) to keep the metals liquid and the equipment required to do that is bulky and energy-consuming.

For the study, published in the journal Advanced Materials, the UT team examined alloys that could remain liquid at useful temperatures. They decided to use a gallium-indium alloy for the cathode and a sodium-potassium alloy for the anode, which was able to stay liquid at 20°C (68°F). The researchers say it’s the lowest operating temperature ever recorded for a liquid-metal battery.

Jul 17, 2020

For The First Time Ever, Astronomers Have Witnessed a Black Hole ‘Blink’

Posted by in categories: cosmology, materials

Black holes don’t glow — in fact, they’re famous for doing the opposite. But if they’re actively devouring material from the space around them, that material can blaze like a billion X-ray Suns.

And for the first time, astronomers have now seen that blaze mysteriously snuffed out, before gradually returning to brightness.

The supermassive black hole is a beast clocking in at 19 million solar masses, powering a galactic nucleus 275 million light-years away, in a galaxy called 1ES 1927+654.

Jul 16, 2020

Superconductivity in metallic twisted bilayer graphene stabilized

Posted by in category: materials

Placing a single layer of tungsten diselenide in contact with twisted bilayer graphene enables superconductivity even for non-magic twist angles where insulating behavior is absent.