Menu

Blog

Archive for the ‘materials’ category: Page 103

Apr 21, 2023

A New Card up Graphene’s Sleeve

Posted by in categories: materials, quantum physics

Graphene is found to exhibit a magnetoresistance dwarfing that of all known materials at room temperature—a behavior that may lead to new magnetic sensors and help decipher the physics of strange metals.

One might expect that, two decades after its discovery, graphene would have exhausted its potential for surprises. But the thinnest, strongest, most conductive of all materials has now added another record to its tally. A collaboration that includes graphene’s codiscoverer and Nobel laureate Andre Geim of the University of Manchester, UK, reports that graphene can have a room-temperature magnetoresistance—a magnetic-field-induced change in electrical resistivity—that’s 100 times larger than that of any known material [1]. Graphene’s giant magnetoresistance could lead to novel magnetic-field sensors but also offer an experimental window into exotic quantum regimes of electrical conduction that might be related to the mysterious “strange metals.”

Magnetoresistance, which occurs both in bulk materials and multilayer structures, found a killer app in magnetic-field sensors such as those used to read data from magnetic memories. Researchers have long been interested in the limits of this phenomenon, which has led to discoveries of “giant,” “colossal,” and “extraordinary” forms of magnetoresistance. The associated materials exhibit resistivity changes of up to 1,000,000% when exposed to magnetic fields of several teslas (T). The largest effects, however, require extremely low temperatures that can only be reached with impractical liquid-helium cooling systems.

Apr 20, 2023

Giant magnetoresistance spotted in near-pristine graphene

Posted by in categories: materials, physics

After amazing us with its incredible strength, flexibility and thermal conductivity, graphene has now chalked up another remarkable property with its magnetoresistance. Researchers in Singapore and the UK have shown that, in near-pristine monolayer graphene, the room-temperature magnetoresistance can be orders of magnitude higher than in any other material. It could therefore provide both a platform for exploring exotic physics and potentially a tool for improving electronic devices.

\r \r.

Magnetoresistance is a change in electrical resistance on exposure to a magnetic field. In the classical regime, magnetoresistance arises because the magnetic field curves the trajectories of flowing charges by the Lorentz force. In traditional metals, in which conduction occurs almost solely through electron motion, magnetoresistance quickly saturates as the field increases because the deflection of the electrons creates a net potential difference across the material, which counteracts the Lorentz potential. The situation is different in semimetals such as bismuth and graphite, in which current is carried equally by electrons and positive holes. Opposite charges flowing in opposite directions end up being deflected the same way by the magnetic field, so no net potential difference is generated and the magnetoresistance can theoretically grow indefinitely.

Apr 19, 2023

Experiments show that edges are not needed to realize an unusual quantum effect

Posted by in categories: materials, quantum physics

RIKEN physicists have created an exotic quantum state in a device with a disk-like geometry for the first time, showing that edges are not required. This demonstration opens the way for realizing other novel electronic behavior. Their findings are published in Nature Physics.

Physics has long moved on from the three classic states of matter: solid, liquid and gas. A better theoretical understanding of quantum effects in crystals and the development of advanced experimental tools to probe and measure them has revealed a whole host of exotic states of matter.

A prominent example of this is the : a kind of crystalline solid that exhibits wildly different properties on their surfaces than in the rest of the material. The best-known manifestation of this is that conduct electricity on their surfaces but are insulating in their interiors.

Apr 17, 2023

Washing with Vortices

Posted by in category: materials

A fluid flow called a vortex ring can effectively remove oil from a thin, porous material and can clean both surfaces at once.

Apr 17, 2023

The comprehensive characterization of hydrogen at ultra-high pressures

Posted by in categories: materials, physics

Physicists and material scientists have been trying to metallize hydrogen for many decades, but they have not yet succeeded. In 1968, British physicist Neil Ashcroft predicted that atomic metallic hydrogen would be a high-temperature semiconductor.

Most recent studies also suggested that this elusive and hypothetical form of hydrogen would also conduct electricity with no resistance when its temperature exceeds that of boiling water. This prediction ultimately paved the way for the discovery of high-temperature superconductivity in hydrides (i.e., compounds containing hydrogen and a metal).

Researchers at Sapienza University of Rome, Sorbonne University, CNRS, and the International School for Advanced Studies (SISSA) have recently carried out a study aimed at thoroughly characterizing the behavior and properties of hydrogen at high pressures. Their paper, published in Nature Physics, outlines a highly accurate phase diagram of high-pressure hydrogen, which could inform ongoing efforts aimed at creating atomic metallic hydrogen.

Apr 17, 2023

Study demonstrates the non-volatile electrical control of a 2D magnetic insulator using a thin ferroelectric polymer

Posted by in categories: computing, materials

Two-dimensional (2D) magnetic insulators, which are electrically insulating materials with long-range magnetic order, could be used to fabricate compact magneto-electric or magneto-optical devices. Efficiently and reliably controlling the properties of these atomically thin magnets through electrical means, however, has so far proved to be highly challenging, as the materials’ charge levels often cannot be largely adjusted and their crystal fields cannot be considerably altered using external electric fields.

Researchers at University of Maryland and their collaborators recently devised a new strategy that could be used to efficiently control 2D magnetic insulators. This strategy, outlined in a paper in Nature Electronics, relies on the use of a thin ferroelectric polymer that can modulate the 2D materials’ magnetic responses.

“When it comes to , people are primarily pursuing a smaller form factor (relating to higher integration density, which means more devices can be integrated on the unit area/volume of a chip), lower energy consumption, and higher performance,” Cheng Gong, the lead principal investigator for the study, told Tech Xplore.

Apr 16, 2023

High-efficiency stretchable light-emitting material for flexible screens

Posted by in category: materials

An entirely new display technology!

Apr 14, 2023

Scientists identify new benchmark for freezing point of water at —70 C

Posted by in categories: materials, nanotechnology

Scientists have discovered yet another amazing aspect of the weird and wonderful behavior of water—this time when subjected to nanoscale confinement at sub-zero temperatures.

The finding that a crystalline substance can readily give up water at temperatures as low as −70 °C, published in the journal Nature on April 12, has major implications for the development of materials designed to extract water from the atmosphere.

Continue reading “Scientists identify new benchmark for freezing point of water at —70 C” »

Apr 13, 2023

Astronomers confirm presence of third protoplanet about 374 light years away

Posted by in categories: materials, space

The protoplanet was found surrounding HD 169,142, a star located 374 light years from our solar system.

Astronomers have caught a rare glimpse of a planet’s formation. This is only the third time scientists have discovered a protoplanet — an early stage in forming a planet, where cosmic material clumps in a disk surrounding newborn stars.

The observation of new protoplanet.

Continue reading “Astronomers confirm presence of third protoplanet about 374 light years away” »

Apr 12, 2023

Researchers reveal quantum interference in inter-layer Coulomb drag

Posted by in categories: materials, quantum physics

A team led by Prof. Zeng Changgan and Associate Researcher Li Lin from the University of Science and Technology (USTC) / Chinese Academy of Sciences (CAS) Key Laboratory of Strongly-Coupled Quantum Matter Physics, collaborating with Prof. Feng Ji’s team from Peking University, revealed significant quantum interference effect in inter-layer transport process for the first time using graphene-based electronic double-layer systems. Their work was published in Nature Communications.

Coulomb drag is an effect that occurs between two conductive layers in proximity but insulated from each other, wherein moving carriers in one layer (active layer) induces the transport of carriers in the other layer (passive layer), thereby generating an open-circuit voltage in the passive layer.

Coulomb drag has been widely applied in previous studies of long-range interactions between carriers, such as the Bose-Einstein condensation of indirect excitons. However, there is a lack of research on the external field response and possible quantum effects of the Coulomb drag.