Menu

Blog

Archive for the ‘cosmology’ category: Page 61

Feb 16, 2024

A star like a Matryoshka doll: New theory for gravastars

Posted by in categories: cosmology, information science, physics, singularity

The interior of black holes remains a conundrum for science. In 1916, German physicist Karl Schwarzschild outlined a solution to Albert Einstein’s equations of general relativity, in which the center of a black hole consists of a so-called singularity, a point at which space and time no longer exist. Here, the theory goes, all physical laws, including Einstein’s general theory of relativity, no longer apply; the principle of causality is suspended.

This constitutes a great nuisance for science—after all, it means that no information can escape from a black hole beyond the so-called event horizon. This could be a reason why Schwarzschild’s solution did not attract much attention outside the theoretical realm—that is, until the first candidate for a black hole was discovered in 1971, followed by the discovery of the black hole in the center of our Milky Way in the 2000s, and finally the first image of a black hole, captured by the Event Horizon Telescope Collaboration in 2019.

In 2001, Pawel Mazur and Emil Mottola proposed a different solution to Einstein’s field equations that led to objects that they called gravitational condensate stars, or gravastars. Contrary to black holes, gravastars have several advantages from a theoretical astrophysics perspective.

Feb 15, 2024

‘Beyond what’s possible’: New JWST observations unearth mysterious ancient galaxy

Posted by in category: cosmology

Our understanding of how galaxies form and the nature of dark matter could be completely upended after new observations of a stellar population bigger than the Milky Way from more than 11 billion years ago that should not exist.

A paper published today in Nature details findings using new data from the James Webb Space Telescope (JWST). The results find that a in the —observed 11.5 billion years ago (a cosmic redshift of 3.2)—has an extremely old population of stars formed much earlier—1.5 billion years earlier in time (a redshift of around 11). The observation upends current modeling, as not enough dark matter has built up in sufficient concentrations to seed their formation.

Swinburne University of Technology’s Distinguished Professor Karl Glazebrook led the study and the international team, who used the JWST for spectroscopic observations of this massive quiescent galaxy.

Feb 14, 2024

Most detailed X-ray sky map bolsters standard model of cosmology

Posted by in categories: cosmology, government

The picture was the result of the first six months of operation of eROSITA (Extended Roentgen Survey with an Imaging Telescope Array), one of two X-ray telescopes that were launched into space in July 2019 aboard the Russian spacecraft SRG (Spectrum-Roentgen-Gamma). eROSITA scans the sky as the spacecraft spins, and collects data over wider angles than are possible for most other X-ray observatories. This enables it to slowly sweep the entire sky every six months.

By an unusual arrangement, the eROSITA team is split into two — with a group based in Germany and one based in Russia — and each has exclusive access to eROSITA data from only half of the sky. The mission was originally intended to cover the sky eight times. But Russia’s full-scale invasion of Ukraine in 2022 led the German government to freeze its collaborations, and eROSITA was put on stand-by. By then, it had completed four full sky scans.

The data that Bulbul and her collaborators have used so far were from their half of the sky, collected during the first scan. Even so, the results are already among the most precise cosmological measurements ever made. It is unclear when the Russia-based group will publish its data and analysis.

Feb 14, 2024

X-ray survey bolsters prevailing theory of universe’s expansion

Posted by in category: cosmology

EROSITA telescope shows galaxies’ “clumpiness” matches predicted effect of dark energy, dark matter.

Feb 14, 2024

Stranger Stars

Posted by in categories: cosmology, particle physics

Some of the most bizarre and interesting objects in the Universe are stars. Let’s go on a journey and discover what happens when physics is taken to the most extreme.

Chapters:
00:00 Intro.
03:33 Red dwarfs.
04:53 White dwarfs.
06:39 Black Dwarfs.
08:15 Neutron stars.
13:36 Quark stars.
15:58 Strange stars.
16:35 Electroweak stars.
17:38 Planck stars.

Continue reading “Stranger Stars” »

Feb 14, 2024

Staggering Structure in 19 Nearby Spiral Galaxies

Posted by in categories: cosmology, physics

The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near-and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program.

It’s oh-so-easy to be absolutely mesmerized by these spiral galaxies. Follow their clearly defined arms, which are brimming with stars, to their centers, where there may be old star clusters and – sometimes – active supermassive black holes. Only NASA’s James Webb Space Telescope can deliver highly detailed scenes of nearby galaxies in a combination of near-and mid-infrared light — and a set of these images was publicly released today.

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near-and mid-infrared contributions have provided several new puzzle pieces.

Feb 13, 2024

Can Technological Civilizations Move Stars?

Posted by in category: cosmology

Sergey Brin, the brilliant Tech billionaire who co-founded Google, is building an airship at a cost of 250 million dollars, that would allow him to carry his home to wherever he goes. Could this concept be extended to the solar system as a whole? Might we want to take the Sun with us for a ride through the Milky Way galaxy?

Ecclesiastes 1:9 argued: “there is nothing new under the sun.” This gloomy perspective need not be true forever. With a few more centuries of science and technology, our civilization might develop a stellar engine that propels the Sun and allows us to travel with it through the Milky Way galaxy and beyond.

Continue reading “Can Technological Civilizations Move Stars?” »

Feb 13, 2024

Black Hole at the Center of a Galaxy in the Early Universe received Less Mass Influx than expected, astronomers find

Posted by in categories: cosmology, physics

With the upgraded GRAVITY-instrument at the Very Large Telescope Interferometer of the European Southern Observatory, a team of astronomers led by the Max Planck Institute for Extraterrestrial Physics has determined the mass of a black hole in a galaxy only 2 billion years after the Big Bang. With 300 million solar masses, the black hole is actually under-massive compared to the mass of its host galaxy. Researchers suspect what is happening here.

A paper on this work is published in the journal Nature.

In the more local universe, astronomers have observed tight relationships between the properties of galaxies and the mass of the supermassive black holes residing at their centers, suggesting that galaxies and black holes co-evolve. A crucial test would be to probe this relationship at early cosmic times, but for these far-away galaxies, traditional direct methods of measuring the black hole mass are either impossible or extremely difficult.

Feb 12, 2024

Lopsided Galaxies Shed Light on the Speed of Dark Matter

Posted by in categories: cosmology, particle physics

In new research published in Astronomy & Astrophysics, researchers have figured out how to precisely calculate the forces that affect galaxies in tidal cycles. The next stage is to find galaxies sufficiently lopsided in the universe to study the velocity of dark matter relative to the galaxies.

So, how can the speed of dark matter be measured? The prerequisite is to find a galaxy in the universe that moves relative to dark matter. Since everything in the universe is in motion and there is a great deal of dark matter, it is not difficult to find such galaxies.

Heavy objects, like galaxies, attract all types of matter, whether it is dark matter or visible matter that we encounter on a daily basis. As dark matter moves past a galaxy, the galaxy begins to pull the dark matter particles towards it. However, the change of speed direction of the particles takes time. Before their trajectory curves towards the galaxy, they already manage to pass the galaxy.

Feb 10, 2024

Can The Crisis in Cosmology Be SOLVED With Cosmic Voids?

Posted by in category: cosmology

Check out the Space Time Merch Store https://www.pbsspacetime.com/shopSign Up on Patreon to get access to the Space Time Discord!https://www.patreon.com/pbssp

Page 61 of 405First5859606162636465Last