Mar 31, 2024
Scientists discover water in black hole 30 billion trillion miles away
Posted by Shubham Ghosh Roy in category: cosmology
Link :
It’s been found in a quasar, which is somewhat terrifyingly known as a ‘feeding black hole’
Link :
It’s been found in a quasar, which is somewhat terrifyingly known as a ‘feeding black hole’
Black holes are renowned and frightening phenomena—areas characterized by infinite gravitational force, rendering escape impossible. The process of forming a black hole is relatively uncomplicated: it involves compressing a sufficient amount of mass below a specific size threshold. Once this threshold is surpassed, gravity prevails over all other forces, resulting in the creation of a black hole.
The critical threshold varies depending on the quantity of mass being condensed. For an average human, this threshold is comparable to the size of an atomic nucleus. Conversely, for the Earth, compressing its entirety into the volume of a chickpea would generate a black hole of comparable size. Similarly, for a typical star with several times the mass of the Sun, the resulting black hole would span a few miles—a dimension akin to an average city.
Interestingly, amalgamating all the matter in the universe in an attempt to create the largest possible black hole would yield a black hole roughly the size of the universe itself.
Ever wonder where all the active supermassive black holes are in the universe? Now, with the largest quasar catalog yet, you can see the locations of 1.3 million quasars in 3D.
The catalog, Quaia, can be accessed here.
“This quasar catalog is a great example of how productive astronomical projects are,” says David Hogg, study co-author and computational astrophysicist at the Flatiron Institute, in a press release. “Gaia was designed to measure stars in our galaxy, but it also found millions of quasars at the same time, which give us a map of the entire universe.” By mapping and seeing where quasars are across the universe, astrophysicists can learn more about how the universe evolved, insights into how supermassive black holes grow, and even how dark matter clumps together around galaxies. Researchers published the study this week in The Astrophysical Journal.
#jwst Subscribe to Science Time: https://www.youtube.com/sciencetime24Div…
The heliosphere—made of solar wind, solar transients, and the interplanetary magnetic field—acts as our solar system’s personal shield, protecting the planets from galactic cosmic rays. These extremely energetic particles accelerated outwards from events like supernovas and would cause a huge amount of damage if the heliosphere did not mostly absorb them.
Ever since its discovery, dark matter has remained invisible to scientists despite the launch of multiple ultra-sensitive particle detector experiments around the world over several decades.
Now, physicists at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory are proposing a new way to look for dark matter using quantum devices, which might be naturally tuned to detect what researchers call thermalized dark matter.
Most dark matter experiments hunt for galactic dark matter, which rockets into Earth directly from space, but another kind might have been hanging around Earth for years, said SLAC physicist Rebecca Leane, who was an author of the new study.
Learn more about the game and see it in action at https://upperstory.com/turingtumble/?utm_source=YouTube&utm_medium=XXXXUse the coupon code ISAACARTHUR for…
To understand the relationship between the science fiction genre and the Many-Worlds Interpretation, let’s turn to two men – a scientist and a writer. The scientist is Hugh Everett III (1930−1982), a physicist who developed the notion of parallel universes based on an original interpretation of quantum mechanics. He proposed that a pre-formulated theory should be the basis of scientific measurement, quite the opposite of the traditional scientific process in which measurement preceded and determined the theory. But quantum particles do not behave normally, so quantum phenomena and their atomic dynamics cannot be measured by the Newtonian mechanics traditionally applied to the universe.
When Hugh Everett published “Relative State Formulation of Quantum Mechanics” in the Reviews of Modern Physics scientific journal (Volume 29, Issue 3, July — September 1957), his theory that there are many worlds existing in parallel at the same space and time as our own sounded like fantasy fiction to a skeptical scientific world.
While scientists scoffed for more than a decade after Everett published his theory, someone else entered the scene. His name was Philip K. Dick, a scruffy beatnik writer who tramped around Berkeley (California) looking for ways to describe this alternative reality – the one hiding behind our visible reality.
Curtin University-led research has discovered a rare dust particle trapped in an ancient extra-terrestrial meteorite that was formed by a star other than our sun.