Menu

Blog

Archive for the ‘cosmology’ category: Page 241

Oct 15, 2021

Surprise: the Big Bang isn’t the beginning of the universe anymore

Posted by in categories: cosmology, singularity

We used to think the Big Bang meant the universe began from a singularity. Nearly 100 years later, we’re not so sure.

Oct 14, 2021

If a Cosmic Bubble Destroys the Universe, Scientists Now Know When It’ll Happen

Posted by in category: cosmology

For example, the end could come as “heat death” (a reverse of the Big Bang known as the Big Crunch) or The Big Rip (when dark energy becomes so powerful it tears everything we know to pieces). But another possibility that has gained traction is the Cosmic Death Bubble.

The details of this death by bubble are pretty complicated, but it’s based on the idea that the universe is metastable, which means it’s not in its lowest or most stable energy state. While we’re okay for now, there’s the (remote) possibility that the universe could drop into a lower energy state, which would set off a giant light-speed bubble that destroys everything it touches.

Now, as Erik Vance at LiveScience reports, researchers have calculated how long before this Cosmic Death Bubble comes for us, if it happens at all.

Oct 14, 2021

A better black hole laser may prove a circuitous “Theory of Everything”

Posted by in categories: cosmology, quantum physics

Researchers propose quantum circuit black hole lasers to explore Hawking radiation.


Given the tricks GPT-3 had up its sleeve, it’s intriguing to wonder how the Megatron-Turing model may surprise us given that it’s three times larger.

Oct 14, 2021

A ‘Black Hole Laser’ Could Finally Shine a Light on Elusive Hawking Radiation

Posted by in categories: cosmology, quantum physics

Scientists are getting closer to being able to spot Hawking radiation – that elusive thermal radiation thought to be produced by a black hole’s event horizon. Just understanding the concept of this radiation is tricky though, let alone finding it.

A new proposal suggests creating a special kind of quantum circuit to act as a ‘black hole laser’, essentially simulating some of the properties of a black hole. As with previous studies, the idea is that experts can observe and study Hawking radiation without actually having to look at any real black holes.

The basic principle is relatively straightforward. Black holes are objects that warp spacetime so much, not even a wave of light can escape. Swap spacetime for some other material (such as water) and make it flow quickly enough so that waves passing through are too slow to escape, and you’ve got yourself a fairly rudimentary model.

Oct 12, 2021

Strange radio waves emerge from the direction of the galactic center

Posted by in category: cosmology

Astronomers have discovered unusual signals coming from the direction of the Milky Way’s center. The radio waves fit no currently understood pattern of variable radio source and could suggest a new class of stellar object.

“The strangest property of this new signal is that it is has a very high polarization. This means its light oscillates in only one direction, but that direction rotates with time,” said Ziteng Wang, lead author of the new study and a Ph.D. student in the School of Physics at the University of Sydney.

“The brightness of the also varies dramatically, by a factor of 100 and the signal switches on and off apparently at random. We’ve never seen anything like it.”

Oct 11, 2021

NASA Plan To Put A Telescope On The Dark Side Of The Moon

Posted by in categories: business, cosmology, Elon Musk, space travel

https://www.youtube.com/watch?v=fs-nEyDWoXE

Whether these different organisations want to land astronauts, install a human outpost or mine minerals and make rocket fuel on the moon, it still lacks an exceptional and important asset– A lunar radio Telescope. Why? Because this development will be uniquely poised to answer one of humanity’s greatest questions: What is our cosmic origin?

Subscribe for more videos ►https://www.youtube.com/c/InsaneCuriosity?sub_confirmation=1?
Business Enquiries ► [email protected].

All the lunar missions that are being planned along with all other missions that different organizations want to accomplish, will be of no use if we don’t seek answers to fundamental questions like “what is the universe made up of? What are we made up of?” And a telescope on the far side of the moon will help us answer these important questions!! So let’s take a look at why this is important and what NASA is planning to do about it.
As mentioned earlier the universe constantly beams its history to us. For instance, the information of what happened long ago in the universe is contained in the long length radio waves that are present everywhere throughout the universe and most likely hold the details about how the first black holes and stars were formed. But there’s a problem. Our noisy radio signals and our atmosphere block these signals from coming to the earth and we can’t read them. The far side of the moon is the best place in the inner solar system to monitor these low-frequency radio waves and help us in detecting certain faint ‘fingerprints’ that the big bang left on the cosmos. The problem with our earth bound telescopes is that they encounter too much interference for electromagnetic pollution caused by human activity, whether it is short-wave broadcasting or maritime communication. On the top of that our ionosphere blocks the longest wavelengths from reaching our earth-based telescopes in the first place. We need these signals to understand and learn whether our universe inflated rapidly in the first trillionth of a trillionth of second after the big bang.

This is the reason why NASA is in the early stages of planning what it would take to build an automated research telescope on the dark side of the moon. One of the most ambitious proposals is to build the Lunar Crater radio telescope or the LCRT

“If You happen to see any content that is yours, and we didn’t give credit in the right manner please let us know at [email protected] and we will correct it immediately”

Continue reading “NASA Plan To Put A Telescope On The Dark Side Of The Moon” »

Oct 10, 2021

Astrophysicists explain the origin of unusually heavy neutron star binaries

Posted by in categories: cosmology, physics

A new study showing how the explosion of a stripped massive star in a supernova can lead to the formation of a heavy neutron star or a light black hole resolves one of the most challenging puzzles to emerge from the detection of neutron star mergers by the gravitational wave observatories LIGO and Virgo.

The first detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2017 was a star merger that mostly conformed to the expectations of astrophysicists. But the second detection, in 2,019 was a merger of two whose combined mass was unexpectedly large.

“It was so shocking that we had to start thinking about how to create a heavy neutron star without making it a pulsar,” said Enrico Ramirez-Ruiz, professor of astronomy and astrophysics at UC Santa Cruz.

Oct 8, 2021

Kagome Lattice Superconductor Reveals a Complex “Cascade” of Quantum Electron States

Posted by in categories: computing, cosmology, quantum physics

In a rare non-magnetic kagome material, a topological metal cools into a superconductor through a sequence of novel charge density waves. Researchers have discovered a complex landscape of electronic states that can co-exist on a kagome lattice, resembling those in high-temperature superconductor.


The Computational Cosmology group of the Department of Astronomy and Astrophysics (DAA) of Valencia University (UV) has published an article in The Astrophysical Journal Letters, one of the international journals with the greatest impact in Astrophysics, which shows, with complex theoretical-computational models, that cosmic voids are constantly replenished with external matter.

Oct 8, 2021

New research adds knowledge on the creation and evolution of the universe

Posted by in categories: computing, cosmology, physics

The Computational Cosmology group of the Department of Astronomy and Astrophysics (DAA) of Valencia University (UV) has published an article in The Astrophysical Journal Letters, one of the international journals with the greatest impact in Astrophysics, which shows, with complex theoretical-computational models, that cosmic voids are constantly replenished with external matter.

“This totally unexpected result can have transcendental implications, not only for our understanding of the large-scale structure of the , but on the settings for the creation and evolution of galaxies,” explains Vicente Quilis, director at the DAA and head researcher for the project.

“Cosmic voids are the largest structures in the cosmos, and knowledge on their creation and evolution is essential to understand the of the universe,” says Susana Planelles, co-director of the research. Studying them as a physical occurrence has always been extremely complex precisely due to being large volumes with very low material content. From an observational point of view, analyzing the few existing items inside them is very hard, and the theoretical modeling of these occurrences is no less complex, which is why highly simplified descriptions of these structures are used.

Oct 7, 2021

What Would Happen If Humanity Became a Type V Civilization?

Posted by in categories: cosmology, time travel

Spoiler: We are still a ‘Type Zero’ civilization.


The Kardashev scale was extended to accommodate type IV and V civilization. Energy output in type V civilization would be tremendous. Possible wormholes, time travel, and teleportation. Breaking the second law of thermodynamics would be the easiest way to progress. Maxwell’s demon thought experiment presents this hypothesis.