Menu

Blog

Archive for the ‘cosmology’ category: Page 188

Aug 29, 2021

Scientists Detected Gravitational Waves That May Stem From a ‘Cloud of Dark Matter Particles’

Posted by in categories: cosmology, particle physics

https://youtube.com/watch?v=FqVHthbdG8w

Physicists may have just detected a cloud of dark matter particles! It could also be primordial black holes, but either would be a major breakthrough.

Aug 28, 2021

Advanced Civilizations Could be Using Dyson Spheres to Collect Unimaginable Energy From Black Holes

Posted by in categories: cosmology, engineering

Black holes are more than just massive objects that swallow everything around them – they’re also one of the universe’s biggest and most stable energy sources. That would make them invaluable to the type of civilization that needs huge amounts of power, such as a Type II Kardashev civilization. But to harness all of that power, the civilization would have to encircle the entire black hole with something that could capture the power it is emitting.

One potential solution would be a Dyson sphere – a type of stellar mega engineering project that encapsulates an entire star (or, in this case, a black hole) in an artificial sheath that captures all of the energy the object at its center emits. But even if it was able to capture all of the energy the black hole emits, the sphere itself would still suffer from heat loss. And that heat loss would make it visible to us, according to new research published by an international team led by researchers at the National Tsing Hua University in Taiwan.

Aug 27, 2021

Magnetic Field around a Black Hole Mapped for the First Time

Posted by in category: cosmology

First-of-their-kind images of the magnetic field around a black hole may explain how the black hole shoots out a jet of energy and matter more than 5,000 light-years into space.

The new images come from the first black hole ever photographed, which sits at the center of Messier 87 a giant elliptical galaxy 55 million light-years away. In 2,017 an international collaboration of more than 300 researchers coordinated 11 radio telescopes around the globe to observe the center of M87. The resulting joint telescope was dubbed the Event Horizon Telescope (EHT). The result, released in 2,019 was an image of a black hole surrounded by a doughnut of glowing matter.

Now, a new analysis of the data reveals that the light in that glowing doughnut is partially polarized, meaning the light waves vibrate in a single plane. This is a signature of light that has passed through hot, magnetized space, and its presence means researchers can begin to map out the magnetic field at the edge of the black hole.

Aug 26, 2021

Trapped-ion crystal makes an ultra-precise quantum sensor

Posted by in categories: biological, cosmology, quantum physics

Physics World


An ultra-precise quantum sensor based on trapped beryllium ions is up to 20 times better at detecting weak electric fields than previous atomic devices. By introducing entanglement between the collective motion of the ions and their electronic spin, a collaboration led by the US National Institute of Standards and Technology (NIST) demonstrated that the ion displacement sensitivity in the presence of an electric field was an order of magnitude greater than for classical protocols with trapped ions. With further improvements, the technology could even be used in the search for dark matter.

Quantum sensors can detect and measure signals that are undetectable with their classical counterparts. They are thus a promising tool in many areas of fundamental science, including biological imaging as well as physics. Of the many different systems being pursued as quantum sensors, trapped ions could be particularly favourable due to experimenters’ precise control over their parameters and their ability to introduce entanglement into the system.

Continue reading “Trapped-ion crystal makes an ultra-precise quantum sensor” »

Aug 25, 2021

Scientists use lasers to create miniature supernova shock waves on Earth

Posted by in categories: cosmology, particle physics

Circa 2020 o.o!


Researchers have created a miniature version of supernova shock waves in a lab here on Earth to solve a long-standing cosmic mystery.

When stars die and explode in supernovas, they create shock waves that emanate across the surrounding plasma. These powerful shock waves blast out cosmic rays, or highly energetic particles, out into the universe. The waves act almost like particle accelerators, pushing these particles out so fast that they approach the speed of light. However, scientists have yet to fully understand exactly how and why the shock waves accelerate these particles.

Aug 25, 2021

‘Flashes of Creation’ recounts the Big Bang theory’s origin story

Posted by in categories: cosmology, particle physics

In ‘Flashes of Creation,’ author Paul Halpern tells the story of George Gamow, Fred Hoyle and their decades-long sparring match about the Big Bang.


Flashes of Creation Paul Halpern Basic Books, $30

The Big Bang wasn’t always a sure bet. For several decades in the 20th century, researchers wrestled with interpreting cosmic origins, or if there even was a beginning at all. At the forefront of that debate stood physicists George Gamow and Fred Hoyle: One advocated for an expanding universe that sprouted from a hot, dense state; the other for a cosmos that is eternal and unchanging. Both pioneered contemporary cosmology, laid the groundwork for our understanding of where atoms come from and brought science to the masses.

Continue reading “‘Flashes of Creation’ recounts the Big Bang theory’s origin story” »

Aug 25, 2021

Rare ‘Einstein Ring’ captured by Hubble reveals the depths of the universe

Posted by in category: cosmology

A new photograph from the Hubble Space Telescope shows a stunning “Einstein Ring” billions of light-years from Earth — a phenomenon named after Albert Einstein, who predicted that gravity could bend light.

The round object at the center of the photograph released by the European Space Agency is actually three galaxies that appear as seven, with four separate images of the most distant of the galaxies forming a visible ring around the others.

The farthest galaxy — a special type of very bright galaxy with a gigantic black hole at its center known as a quasar — is about 15 billion light-years from Earth.

Aug 24, 2021

World-first detector designed by dark matter researchers records rare events

Posted by in categories: cosmology, particle physics

A ground-breaking detector that aims to use quartz to capture high frequency gravitational waves has been built by researchers at the ARC Centre of Excellence for Dark Matter Particle Physics (CDM) and the University of Western Australia.

In its first 153 days of operation, two events were detected that could, in principle, be , which have not been recorded by scientists before.

Such high frequency gravitational waves may have been created by a primordial black hole or a cloud of dark matter particles.

Aug 21, 2021

A mysterious kind of black hole may solve a massive cosmological problem

Posted by in category: cosmology

How did the oldest black holes in the universe grow so massive so quickly?


Astronomers believe hot, dense, plasma jets could help identify a mysterious class of black holes, called direct collapse black holes.

Aug 17, 2021

Cracking a mystery of massive black holes and quasars with supercomputer simulations

Posted by in categories: cosmology, evolution, physics, supercomputing

At the center of galaxies, like our own Milky Way, lie massive black holes surrounded by spinning gas. Some shine brightly, with a continuous supply of fuel, while others go dormant for millions of years, only to reawaken with a serendipitous influx of gas. It remains largely a mystery how gas flows across the universe to feed these massive black holes.

UConn Assistant Professor of Physics Daniel Anglés-Alcázar, lead author on a paper published today in The Astrophysical Journal, addresses some of the questions surrounding these massive and enigmatic features of the universe by using new, high-powered simulations.

“Supermassive black holes play a key role in and we are trying to understand how they grow at the centers of galaxies,” says Anglés-Alcázar. “This is very important not just because black holes are very interesting objects on their own, as sources of gravitational waves and all sorts of interesting stuff, but also because we need to understand what the central black holes are doing if we want to understand how galaxies evolve.”