Menu

Blog

Archive for the ‘computing’ category: Page 301

Jan 26, 2022

‘Atomic Armor’ for accelerators enables discoveries

Posted by in categories: biotech/medical, computing

Protective coatings are common for many things in daily life that see a lot of use. We coat wood floors with finish; apply Teflon to the paint on cars; even use diamond coatings on medical devices. Protective coatings are also essential in many demanding research and industrial applications.

Now, researchers at Los Alamos National Laboratory have developed and tested an atomically thin coating for next-generation, electron-beam accelerator equipment—perhaps the most challenging technical application of the technology, the success of which bears out the potential for “Atomic Armor” in a range of applications.

“Accelerators are important tools for addressing some of the faced by humanity,” said Hisato Yamaguchi, member of the Sigma-2 group at the Laboratory. “Those challenges include the quest for , continued scaling of computational power, detection and mitigation of pathogens, and study of the structure and dynamics of the building blocks of life. And those challenges all require the ability to access, observe and control matter on the frontier timescale of electronic motion and the spatial scale of atomic bonds.”

Jan 25, 2022

Novel Ultra-Thin Sensor Records Brain Activity in Record-Breaking Resolution

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

A team of engineers and neurosurgeons developed a state-of-the-art brain sensor that could greatly enhance the treatment of cancer and epilepsy, according to a press statement from the University of California San Diego.

The new apparatus can record electrical signals from the brain’s surface in a never-before-seen resolution for such a device.

Continue reading “Novel Ultra-Thin Sensor Records Brain Activity in Record-Breaking Resolution” »

Jan 25, 2022

Researchers detect 1st merger between black holes with eccentric orbits

Posted by in categories: computing, cosmology, physics

Using hundreds of computer simulations, the researchers found that the gravitational wave signals from GW150521 are best explained by a high-eccentricity, according to the statement.

The study also sheds new light on how some of the black hole mergers detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) and its European counterpart, Virgo, are so much heavier than previously thought possible. Their findings were published Jan. 20 in the journal Nature Astronomy.

Jan 25, 2022

First molecular electronics chip

Posted by in categories: biotech/medical, computing

A new biosensor chip can observe direct electrical measurements of single-molecule interactions. This could enable faster and cheaper DNA sequencing, disease surveillance, and precision medicine on portable devices.

Jan 25, 2022

Manufacturers have less than five days’ supply of some computer chips, Commerce Department says

Posted by in category: computing

A new Commerce Department report highlighted the severity of a global shortage that has hobbled manufacturing and fueled inflation for more than a year, and that defies easy solutions.

Jan 25, 2022

Team demonstrates molecular electronics sensors on a semiconductor chip

Posted by in categories: biotech/medical, computing

The first molecular electronics chip has been developed, realizing a 50-year-old goal of integrating single molecules into circuits to achieve the ultimate scaling limits of Moore’s Law. Developed by Roswell Biotechnologies and a multi-disciplinary team of leading academic scientists, the chip uses single molecules as universal sensor elements in a circuit to create a programmable biosensor with real-time, single-molecule sensitivity and unlimited scalability in sensor pixel density. This innovation, appearing this week in a peer-reviewed article in the Proceedings of the National Academy of Sciences (PNAS), will power advances in diverse fields that are fundamentally based on observing molecular interactions, including drug discovery, diagnostics, DNA sequencing, and proteomics.

“Biology works by talking to each other, but our existing measurement methods cannot detect this,” said co-author Jim Tour, Ph.D., a Rice University chemistry professor and a pioneer in the field of molecular electronics. “The demonstrated in this paper for the first time let us listen in on these molecular communications, enabling a new and powerful view of biological information.”

The molecular electronics platform consists of a programmable semiconductor chip with a scalable sensor array architecture. Each array element consists of an electrical current meter that monitors the current flowing through a precision-engineered molecular wire, assembled to span nanoelectrodes that couple it directly into the circuit. The sensor is programmed by attaching the desired probe molecule to the molecular wire, via a central, engineered conjugation site. The observed current provides a direct, electronic readout of molecular interactions of the probe. These picoamp-scale current-versus-time measurements are read out from the sensor array in digital form, at a rate of 1,000 frames per second, to capture molecular interactions data with high resolution, precision and throughput.

Jan 25, 2022

Dr. Amy Throckmorton, PhD — BioCirc / Drexel University — Innovating Life-Saving Therapeutic Devices

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, health

Innovating Life-Saving Therapeutic Devices — Dr. Amy Throckmorton, PhD — BioCirc Research Laboratory, Drexel University School of Biomedical Engineering, Science and Health Systems.


Dr. Amy Throckmorton, Ph.D. (https://drexel.edu/biomed/faculty/core/ThrockmortonAmy/) is Associate Professor and Director of the BioCirc Research Laboratory, in the School of Biomedical Engineering, Science and Health Systems, at Drexel University.

Continue reading “Dr. Amy Throckmorton, PhD — BioCirc / Drexel University — Innovating Life-Saving Therapeutic Devices” »

Jan 25, 2022

Twin-field quantum key distribution (QKD) across an 830-km fibre

Posted by in categories: computing, encryption, internet, quantum physics, security

By using quantum key distribution (QKD), quantum cryptographers can share information via theoretic secure keys between remote peers through physics-based protocols. The laws of quantum physics dictate that photons carrying signals cannot be amplified or relayed through classical optical methods to maintain quantum security. The resulting transmission loss of the channel can limit its achievable distance to form a huge barrier to build large-scale quantum secure networks. In a new report now published in Nature Photonics, Shuang Wang and a research team in quantum information, cryptology and quantum physics in China developed an experimental QKD system to tolerate a channel loss beyond 140 dB across a secure distance of 833.8 km to set a new record for fiber-based quantum key distribution. Using the optimized four-phase twin-field protocol and high quality setup, they achieved secure key rates that were more than two orders of magnitude greater than previous records across similar distances. The results form a breakthrough to build reliable and terrestrial quantum networks across a scale of 1,000 km.

Quantum cryptography and twin-field quantum key distribution (QKD)

Quantum key distribution is based on fundamental laws of physics to distribute secret bits for information-theoretic secure communication, regardless of the unlimited computational power of a potential eavesdropper. The process has attracted widespread attention in the past three decades relative to the development of a global quantum internet, and matured to real-world deployment through optical-fiber networks. Despite this, wider applications of QKD are limited due to channel loss, limiting increase in the key rate and range of QKD. For example, photons are carriers of quantum keys in a QKD setup, and they can be prepared at the single-photon level to be scattered and absorbed by the transmission channel. The photons, however, cannot be amplified, and therefore the receiver can only detect them with very low probability. When transmitted via a direct fiber-based link from the transmitter to the receiver, the key rate can therefore decrease with transmission distance.

Jan 24, 2022

GPU prices are finally begining to decline

Posted by in category: computing

Guys over at 3DCenter.org have just updated their GPU price charts for January, which is a second update this month.

AMD Radeon RX 6,000 and GeForce RTX 30 prices are declining, this trend has been observed for the second time this month. From 185%, GeForce RTX 30 cards are now ‘only’ 177% more expensive than they should be. Meanwhile, AMD cards observe a reduction from 178% to 167%, which is a retail price increase over the official MSRP (Manufacturer’s Suggested Retail Price).

Those price changes are likely not yet affected by the crypto coin crash that took place last week. For those to take effect we probably have to wait a week or two (so the next price update should be very interesting).

Jan 24, 2022

Elon Musk’s Brain Chip Company Is Preparing to Launch Human Trials

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Elon Musk’s brain chip company Neuralink appears to be gearing up to launch its first-ever human trials, with the firm now looking to recruit a director to run the tests.

According to The Guardian, the entrepreneur, who owns a variety of science-based start-ups, is preparing to take Neuralink’s brain chip research to the next stage by hiring a mission-driven Clinical Trial Director to begin human testing. The company is moving toward potentially finding a way to use the technology to treat people with brain and spinal injuries.