Menu

Blog

Archive for the ‘chemistry’ category: Page 43

Jul 18, 2023

Study sheds light on mechanisms underlying H. pylori-induced gastric cancer

Posted by in categories: biotech/medical, chemistry

Helicobacter pylori (H. pylori) infections are commonly associated with abdominal pain, bloating, and acidity. Clinical evidence suggests that infection with H. pylori cagA+ strains dramatically increases the risk of developing gastric cancer.

A specialized protein delivered by H. pylori to the host, oncoprotein “CagA,” has been shown to interact with multiple host proteins and promote gastric carcinogenesis (transformation of normal cells to ). However, the underlying mechanisms associated with its biochemical activity have not been fully determined yet.

A new study published in Science Signaling on 18 July insights into the additional mechanism of oncogenic CagA action.

Jul 18, 2023

Macroscopic photonic single crystals via seeded growth of DNA-coated colloids

Posted by in categories: biotech/medical, chemistry, nanotechnology

DNA-programmed self-assembly leverages the chemical specificity of DNA hybridization to stabilize user-prescribed crystal structures1,2. Pioneering studies have demonstrated that DNA hybridization can guide the self-assembly of a wide variety of nanoparticle crystal lattices, which can grow to micrometer dimensions and contain millions of particles3,4,5,6,7,8,9. Attention has now turned toward the goal of assembling photonic crystals from optical-scale particles (i.e., roughly 100‑1000 nm in diameter)10,11,12 using DNA-programmed interactions. To this end, progress over the past decade has established that DNA can indeed program the self-assembly of bespoke crystalline structures from micrometer-sized colloidal particles13,14,15,16,17,18,19. However, growing single-domain crystals comprising millions of DNA-functionalized, micrometer-sized colloidal particles remains an unresolved barrier to the development of practical technologies based on DNA-programmed assembly. Prior efforts have yielded either single-domain crystals no more than a few dozen micrometers in size13,14,15,16 or larger polycrystalline materials with heterogeneous domain sizes12,15,17,20. These features—small crystal domains, polycrystallinity, and size dispersity—have therefore precluded the use of DNA-coated colloidal crystals in photonic metamaterial applications.

Assembling macroscopic materials from DNA-functionalized, micrometer-sized colloids is challenging due to the vastly different length scales between the DNA molecules and the colloidal particles (Fig. 1a). This combination leads to crystallization kinetics that are extremely sensitive to temperature and prone to kinetic trapping1,21,22,23. The resulting challenges are both practical and fundamental in nature. For example, recent work has shown that crystal nucleation rates can vary by orders of magnitude over a temperature range of only 0.25 °C19. Extremely precise temperature control would therefore be required to self-assemble single-domain crystals from a bulk solution (Fig. 1b). At the same time, annealing polycrystalline materials is difficult due to the combination of the short-range attraction and the friction arising from the DNA-mediated colloidal interactions, which slows the rolling and sliding of colloidal particles at crystalline interfaces15,19,24,25.

Jul 18, 2023

Cats In A Spin Over Catnip

Posted by in category: chemistry

Big cats also like cat nip 😗😁.


As you may know from your own pet, if there’s one thing that is guaranteed to send your cat a little dizzy it’s their catnip toy. Big cats are no exception and one of the favourite enrichment activities we give our cats is their regular catnip fix.

Continue reading “Cats In A Spin Over Catnip” »

Jul 18, 2023

Harvard scientists claim to have discovered the “Fountain of Youth” that can be put into a pill

Posted by in categories: biotech/medical, chemistry, Elon Musk, life extension

Scientists at Harvard University claim to have come excitingly close to finding the proverbial Fountain of Youth. According to a recent publication in the scientific journal Aging, the team has identified six chemical concoctions that have the ability to reverse the aging process in both human and mice skin cells.

Dr. David Sinclair, a molecular biologist at Harvard Medical School and co-author of the study, has hailed this as a “breakthrough” and sees it as a step towards “affordable whole-body rejuvenation.”

Dr. Sinclair has even suggested that human trials could commence within the next year. This prediction has caught the attention of prominent figures, such as tech mogul Elon Musk. He responded to the news with curiosity asking, “Ok, so what exactly is it?”

Jul 18, 2023

Chemical compounds reverse cell aging, study finds

Posted by in categories: biotech/medical, chemistry, engineering, life extension

(NewsNation) — A new study claims to have found chemical compounds that can actually reverse the effects of aging, though so far results have been limited to animal studies.

Harvard Medical School, University of Maine and Massachusetts Institute of Technology scientists collaborated on the study, published in the journal Aging. Researchers found it was possible to reverse cellular engineering rather than simply delay it.

They used six chemical compounds to reverse aging in cells, returning them to a youthful state without having them revert too far and become cancerous.

Jul 18, 2023

The Next Frontier For Large Language Models Is Biology

Posted by in categories: biotech/medical, chemistry, computing, genetics

Large language models like GPT-4 have taken the world by storm thanks to their astonishing command of natural language. Yet the most significant long-term opportunity for LLMs will entail an entirely different type of language: the language of biology.

One striking theme has emerged from the long march of research progress across biochemistry, molecular biology and genetics over the past century: it turns out that biology is a decipherable, programmable, in some ways even digital system.

DNA encodes the complete genetic instructions for every living organism on earth using just four variables—A (adenine), C (cytosine), G (guanine) and T (thymine). Compare this to modern computing systems, which use two variables—0 and 1—to encode all the world’s digital electronic information. One system is binary and the other is quaternary, but the two have a surprising amount of conceptual overlap; both systems can properly be thought of as digital.

Jul 17, 2023

Study combines quantum computing and generative AI for drug discovery

Posted by in categories: chemistry, quantum physics, robotics/AI

Science and Technology:

Hope that they find a medicine to cure aging and turn us immortal and able to live forever still during “our” lifetime.


Insilico Medicine, a clinical stage generative artificial intelligence (AI)-driven drug discovery company, today announced that it combined two rapidly developing technologies, quantum computing and generative AI, to explore lead candidate discovery in drug development and successfully demonstrated the potential advantages of quantum generative adversarial networks in generative chemistry.

Continue reading “Study combines quantum computing and generative AI for drug discovery” »

Jul 17, 2023

Organic electrochemical transistors printed from degradable materials as disposable biochemical sensors

Posted by in categories: chemistry, computing, internet, neuroscience

Advantageously, the fabrication of OECTs, in particular of the conductive channel, is compatible with solution-based fabrication methods and additive manufacturing, enabling cost-efficient manufacturing and rapid prototyping on flexible substrates10. This opens new possibilities in terms of the combination of materials that can be used in the manufacturing of OECTs, in particular the use of degradable materials. Degradable electronics refer to electronic systems and components that can degrade in an environment of interest spontaneously, in a controlled amount of time, and without releasing byproducts that are harmful to that environment18. With concerning amounts of electronic waste being generated, as well as exploding numbers of connected Internet of Things (IoT) devices19, there is growing interest in transient electronic systems with a service life of a few days to a few months. Although advances have been made in the manufacturing of fully degradable functional devices, i.e. antennas20, batteries21 and physical as well as environmental sensors22,23, investigations into degradable biosensors remain relatively limited24.

Advances have been made in proposing new materials for the OECT terminals, in particular the gate electrode, as its properties play a key role in modulating the transistor’s behavior. While Ag/AgCl gates offer the advantage of being non-polarizable, Au gates present little electrochemical activity in the range of voltages typical for OECT-based biosensing. Au and PEDOT: PSS gates have been explored for OECT-based biosensors, with the advantage of expanding the possibilities for bio-functionalizing the gate electrode6,25. PEDOT: PSS gates and contacts have been investigated, simplifying notably their manufacturing26. An all-PEDOT: PSS OECT was presented and shown to measure dopamine concentrations reliably and specifically27. Various forms of carbon have also been investigated for the realization of gate electrodes for OECTs8. Activated carbon gates, for example, showed increased drain current modulation due to the large specific surface area of the carbon material9. Recently, screen-printed carbon-gated OECTs were shown to be suitable for the detection of uric acid after functionalization of the carbon gate with platinum and Uricase28. Transient or recyclable materials such as paper26 have been proposed as substrates for OECTs. Polylactic acid (PLA)24 and Poly(lactic-co-glycolic acid)29 (PLGA) have been studied as degradable substrates for OECTs30, as well as diacetate cellulose31. These studies, however, relied on non-degradable contacts for the operation of the printed OECTs. More recently, Khan et al.32 proposed a fully printed OECT on cellulose acetate (CA) for the selective detection of glucose. The OECT is made of degradable materials and CA is a biocompatible material that is suitable as a substrate for transient biosensors.

In this work, we present disposable and biocompatible OECTs based on carbon, PEDOT: PSS and PLA as substrate. Challenges in the fabrication of transient electronic devices come from the low-temperature tolerance18 of biopolymeric substrates and reaching adhesion of the PEDOT: PSS channel material on the biopolymer33, which is often deposited from an aqueous solution. A fully additive fabrication process is developed to address these challenges, leveraging screen and inkjet printing. The influence of the gate material choice, as well as the gate geometry, are studied, and these parameters are optimized for the fabrication of transient OECTs for ions and metabolite sensing. The transistor characteristics of the devices as well as their sensing behavior and reproducibility are characterized. Finally, the degradable OECTs are integrated with highly conductive transient zinc metal traces, which are of interest for interconnection with other degradable electronic circuits and could allow, for example, the wireless operation of the biochemical chemical sensors34.

Jul 17, 2023

Has humanity defeated ageing? Scientists strike ‘single pill’ breakthrough

Posted by in categories: biotech/medical, chemistry, life extension

Scientists have achieved a major breakthrough in combating ageing and age-related diseases. The study by the researchers from Harvard Medical School and Massachusetts Institute of Technology was published in the journal Aging-US.

Humanity’s attempt to prevent ageing: What is the breakthrough?

The researchers have introduced a chemical method through a ‘single pill’ to reprogram body cells, following which the cells effectively return to a younger state.

Jul 16, 2023

Researchers demonstrate the power of quantum computing in drug design

Posted by in categories: chemistry, quantum physics, robotics/AI

Gero, an AI-driven biotech focused on aging and longevity, has demonstrated the feasibility of applying quantum computing for drug design and generative chemistry, which now offers significant promise for the future of healthcare. The research, published in Scientific Reports, outlines how a hybrid quantum-classical machine-learning model was used to interface between classical and quantum computational devices with the goal of generating novel chemical structures for potential drugs—an industry first.

The research paper follows in the wake of recent advancements from Gero, which sparked vigorous discussion among longevity experts in the when a story was published in Popular Mechanics that asserted humans can stop—but not fully reverse—aging. Earlier this year, Gero announced a target discovery deal with Pfizer, whereby Gero’s machine-learning technology platform is being applied to discover potential therapeutic targets for fibrotic diseases using large-scale human data.

In this new line of research, the team explored whether a hybrid generative AI system—a deep neural network working in conjunction with commercially available quantum hardware—could suggest unique chemical structures that are synthetically feasible and possess drug-like properties.

Page 43 of 270First4041424344454647Last