Menu

Blog

Archive for the ‘chemistry’ category: Page 270

Aug 4, 2019

Antibiotic found in ocean could help beat superbugs

Posted by in categories: biotech/medical, chemistry, military

In the deep of the ocean, where the sun’s rays struggle to penetrate, organisms lurk that could solve the biggest medical crisis facing humanity.

Far below the surface bacteria are engaged in warfare with each other — and to do so they make an antibiotic so strong it can destroy the toughest superbugs in our hospitals.

“But there’s a problem,” Rebecca Goss, a professor of organic chemistry at the University of St Andrews, said. “It disintegrates in sunlight.”

Jul 30, 2019

Dr. Deborah Mash, Professor of Neurology and Molecular and Cellular Pharmacology, Director of the Brain Endowment Bank at the University of Miami, and CEO of DemeRx — Ira Pastor — ideaXme Show

Posted by in categories: aging, biotech/medical, business, chemistry, genetics, health, life extension, neuroscience, science, transhumanism

Jul 28, 2019

An Israeli Scientist Paves the Way to Alzheimer’s Cure, One Algorithm at a Time

Posted by in categories: biotech/medical, business, chemistry, information science, neuroscience

Scientists at work in laboratory. Photo: Public domain via Wikicommons.

CTech – When chemistry Nobel laureate Michael Levitt met his wife two years ago, he didn’t know it would lead to a wonderful friendship with a young Israeli scientist. When Israeli scientist Shahar Barbash decided to found a startup with the aim of cutting down the time needed to develop new medicine, he didn’t know that a friend’s wedding would help him score a meeting with a man many want to meet but few do. But Levitt’s wife is an old friend of Barbash’s parents, and the rest, as they say, is history.

One of the joys of being an old scientist is to encourage extraordinary young ones, Levitt, an American-British-Israeli biophysicist and a professor at Stanford University since 1987, said in a recent interview with Calcalist. He might have met Barbash because his wife knew his family, but that is not enough to make him go into business with someone, Levitt said. “I got on board because his vision excited me, even though I thought it would be very hard to realize.”

Jul 26, 2019

Virginia Tech researchers lead breakthrough in quantum computing

Posted by in categories: chemistry, computing, information science, quantum physics

Abstract: The large, error-correcting quantum computers envisioned today could be decades away, yet experts are vigorously trying to come up with ways to use existing and near-term quantum processors to solve useful problems despite limitations due to errors or “noise.”

A key envisioned use is simulating molecular properties. In the long run, this can lead to advances in materials improvement and drug discovery. But not with noisy calculations confusing the results.

Now, a team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer. Virginia Tech College of Science faculty members Ed Barnes, Sophia Economou, and Nick Mayhall recently published a paper in Nature Communications detailing the advancement.

Jul 24, 2019

Towards a light driven molecular assembler

Posted by in categories: biological, chemistry, nanotechnology, physics

A team of chemists built the first artificial assembler, which uses light as the energy source. These molecular machines are performing synthesis in a similar way as biological nanomachines. Advantages are fewer side products, enantioselectivity, and shorter synthetic pathways since the mechanosynthesis forces the molecules into a predefined reaction channel.

Chemists usually synthesize molecules using stochastic bond-forming collisions of the reactant molecules in solution. Nature follows a different strategy in biochemical synthesis. The majority of biochemical reactions are driven by machine-type protein complexes that bind and position the reactive molecules for selective transformations. Artificial “molecular assemblers” performing “mechanosynthesis” have been proposed as a new paradigm in chemistry and nanofabrication. A team of chemists at Kiel University (Germany) built the first artificial assembler, that performs synthesis and uses light as the energy source. The system combines selective binding of the reactants, accurate positioning, and active release of the product. The scientists published their findings in the journal Communications Chemistry.

The idea of molecular assemblers, that are able to build molecules, has already been proposed in 1986 by K. Eric Drexler, based on ideas of Richard Feynman, Nobel Laureate in Physics. In his book “Engines of Creation: The Coming Era of Nanotechnology” and follow-up publications Drexler proposes molecular machines capable of positioning reactive molecules with atomic precision and to build larger, more sophisticated structures via mechanosynthesis. If such a molecular nanobot could build any molecule, it could certainly build another copy of itself, i.e. it could self-replicate. These imaginative visions inspired a number of science fiction authors, but also started an intensive scientific controversy.

Jul 22, 2019

Panic Attacks and Anxiety Episodes Linked to Vitamin Deficiencies in Groundbreaking Study

Posted by in categories: biotech/medical, chemistry, genetics, health, neuroscience

HELLO! https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025786/


With approximately 40 million adults across the United States experiencing anxiety each year, scientists and researchers have dedicated their careers to trying to better understand this condition. Despite this work, we are still somewhat unclear on what actually causes this condition to occur.

Continue reading “Panic Attacks and Anxiety Episodes Linked to Vitamin Deficiencies in Groundbreaking Study” »

Jul 22, 2019

The Universe’s First Type of Molecule Is Found at Last

Posted by in categories: chemistry, cosmology, particle physics, transportation

Making a replicator from this could make something that could create almost anything :3.


The first type of molecule that ever formed in the universe has been detected in space for the first time, after decades of searching. Scientists discovered its signature in our own galaxy using the world’s largest airborne observatory, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, as the aircraft flew high above the Earth’s surface and pointed its sensitive instruments out into the cosmos.

Continue reading “The Universe’s First Type of Molecule Is Found at Last” »

Jul 19, 2019

Regenerage International, IIMET, and Bioquark Inc. to Collaborate on Clinical Study in Biologic Age Reversal of Photodamaged Skin

Posted by in categories: aging, bioengineering, biotech/medical, business, chemistry, DNA, genetics, health, life extension, science

https://www.prweb.com/releases/regenerage_international_iime…449142.htm

Pretty girl applying moisturizing cream in front of mirror

Jul 13, 2019

The biological computer is an implantable device that is mainly used for tasks like monitoring the body’s activities or inducing therapeutic effects

Posted by in categories: biotech/medical, chemistry, computing, mathematics

The biological computer is an implantable device that is mainly used for tasks like monitoring the body’s activities or inducing therapeutic effects, all at the molecular or cellular level. This is made up of RNA, DNA and proteins and can also perform simple mathematical calculations.


DNA computing is a branch of computing which uses DNA, biochemistry, and molecular biology hardware, instead of the traditional silicon-based computer technologies. Research and development in this area concerns theory, experiments, and applications of DNA computing.

https://www.wired.com/…/finally-a-dna-computer-that-can-ac…/

Continue reading “The biological computer is an implantable device that is mainly used for tasks like monitoring the body’s activities or inducing therapeutic effects” »

Jul 1, 2019

Theoretical physicists unveil one of the most ubiquitous and elusive concepts in chemistry

Posted by in categories: chemistry, computing, particle physics, quantum physics

Oxidation numbers have so far eluded any rigorous quantum mechanical definition. A new SISSA study, published in Nature Physics, provides such a definition based on the theory of topological quantum numbers, which was honored with the 2016 Nobel Prize in Physics, awarded to Thouless, Haldane and Kosterlitz. This result, combined with recent advances in the theory of transport achieved at SISSA, paves the way to an accurate, yet tractable, numerical simulation of a broad class of materials that are important in energy-related technologies and planetary sciences.

Every undergraduate student in the natural sciences learns how to associate an integer oxidation number to a chemical species participating in a reaction. Unfortunately, the very concept of oxidation state has thus far eluded a rigorous quantum mechanical definition, so that no method was known until now to compute oxidation numbers from the fundamental laws of nature, let alone demonstrate that their use in the simulation of charge transport does not spoil the quality of numerical simulations. At the same time, the evaluation of electric currents in ionic conductors, which is required to model their transport properties, is presently based on a cumbersome quantum-mechanical approach that severely limits the feasibility of large-scale computer simulations. Scientists have lately noticed that a simplified model where each atom carries a charge equal to its oxidation number may give results in surprising good agreement with rigorous but much more expensive approaches.