Menu

Blog

Archive for the ‘chemistry’ category: Page 134

Mar 25, 2023

Developing smart light traps inspired by photosynthesis

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Plants use photosynthesis to harvest energy from sunlight. Now researchers at the Technical University of Munich (TUM) have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.

Syngas, a mixture of carbon monoxide and hydrogen, is an important intermediate product in the manufacture of many chemical starter materials such as ammonia, methanol and synthetic hydrocarbon fuels. “Syngas is currently made almost exclusively using fossil ,” says Prof. Roland Fischer from the Chair of Inorganic and Organometallic Chemistry.

A yellow powder, developed by a research team led by Fischer, is to change all that. The scientists were inspired by photosynthesis, the process plants use to produce chemical energy from light. “Nature needs carbon dioxide and water for photosynthesis,” says Fischer. The nanomaterial developed by the researchers imitates the properties of the enzymes involved in photosynthesis. The “nanozyme” produces syngas using carbon dioxide, water and light in a similar manner.

Mar 25, 2023

Using chemical exfoliation to produce superconducting tungsten disulfide ink

Posted by in categories: chemistry, computing, quantum physics

A team of chemists, engineers, material scientists and physicists from Princeton University, Rutgers University and the University of Regensburg has developed a chemical exfoliation technique to produce single-molecule-thick tungsten disulfide ink. The group describes their technique in a paper published in the journal Science Advances.

As research continues into the creation of truly useful quantum computers, scientists continue to search for new materials that could support such machines. In this new effort, the research team looked into finding ways to print very cold circuits inside quantum computers using superconducting ink.

The new method involved a material consisting of layers of disulfide and potassium. The researchers exfoliated the material by dunking it into a sulfuric acid solution. This dissolved the potassium and left behind single-molecule layers of tungsten disulfide. The final step involved rinsing the acid and remnants in it, leaving the layers of tungsten suspended in a tub of water. In this state, the researchers found that the layers of tungsten disulfide could be used as a form of ink that could be printed onto various types of surfaces, such as plastic, silicon or glass. This left a one-molecule-thick coating on the material.

Mar 25, 2023

The Personalized Stem Cells That Could One Day Treat Parkinson’s and Heart Failure

Posted by in categories: biotech/medical, chemistry, neuroscience

Could an injection of lab-cultured brain cells, created from a person’s own cells, reverse symptoms of Parkinson’s disease? That’s an idea that Aspen Neuroscience Inc., a startup based in San Diego, plans to test in human trials later this year.

In patients with Parkinson’s, neurons die and lose the ability to make the chemical dopamine, leading to erratic, uncontrollable movements. Aspen Neuroscience will test if the newly injected cells can mature into dopamine producers, stopping the debilitating symptoms of this incurable disease, says Damien McDevitt, the company’s chief executive officer. Tests in animals have shown promise, the company says.

Mar 24, 2023

Asteroid discovery suggests ingredients for life on Earth came from space

Posted by in categories: biological, chemistry, space

March 21 (Reuters) — Two organic compounds essential for living organisms have been found in samples retrieved from the asteroid Ryugu, buttressing the notion that some ingredients crucial for the advent of life arrived on Earth aboard rocks from space billions of years ago.

Scientists said on Tuesday they detected uracil and niacin in rocks obtained by the Japanese Space Agency’s Hayabusa2 spacecraft from two sites on Ryugu in 2019. Uracil is one of the chemical building blocks for RNA, a molecule carrying directions for building and operating living organisms. Niacin, also called Vitamin B3 or nicotinic acid, is vital for their metabolism.

The Ryugu samples, which looked like dark-gray rubble, were transported 155 million miles (250 million km) back to Earth and returned to our planet’s surface in a sealed capsule that landed in 2020 in Australia’s remote outback for analysis in Japan.

Mar 24, 2023

Using high-precision quantum chemistry to study super-efficient energy transfer in photosynthesis

Posted by in categories: chemistry, energy, quantum physics

Photosynthesis drives all life on Earth. Complex processes are required for the sunlight-powered conversion of carbon dioxide and water to energy-rich sugar and oxygen. These processes are driven by two protein complexes, photosystems I and II. In photosystem I, sunlight is used with an efficiency of almost 100%. Here a complex network of 288 chlorophylls plays the decisive role.

A team led by LMU chemist Regina de Vivie-Riedle has now characterized these chlorophylls with the help of high-precision quantum chemical calculations—an important milestone toward a comprehensive understanding of energy transfer in this system. This discovery may help exploit its efficiency in artificial systems in the future.

The chlorophylls in I capture sunlight in an antenna complex and transfer the energy to a reaction center. There, the is used to trigger a redox process—that is to say, a whereby electrons are transferred. The quantum yield of photosystem I is almost 100%, meaning that almost every absorbed photon leads to a redox event in the reaction center.

Mar 24, 2023

An ‘ecosystem’ of tools to boost machine learning-based design of metal–organic frameworks

Posted by in categories: biotech/medical, chemistry, robotics/AI

A team of chemists and computer scientists from the Swiss Federal Institute of Technology Lausanne, the University of California and Institut des Sciences et Ingenierie Chimiques, Ecole, have developed an ecosystem of tools to boost machine-learning-based design of metal-organic frameworks.

In their study, reported in the journal ACS Central Science, Kevin Maik Jablonka, Andrew Rosen, Aditi Krishnapriyan and Berend Smit coded tools to convert data into machine learning inputs to create a system to boost machine-learning frameworks.

Reticular chemistry is the science of designing and synthesizing porous crystalline materials with certain predefined structures and properties (building blocks). These materials, known as (MOFs) have applications in gas storage, separation, catalysis, sensing and drug delivery.

Mar 24, 2023

Scientists Identify “Pioneer Peptide” That May Have Sparked Life on Earth

Posted by in categories: alien life, chemistry, physics

A team of Rutgers University scientists dedicated to pinpointing the primordial origins of metabolism – a set of core chemical reactions that first powered life on Earth – has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.

The research, published on March 10 in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Mar 24, 2023

Single-atom vibrational spectroscopy now sensitive at the level of chemical bonds

Posted by in categories: chemistry, particle physics

Researchers led by Prof. Zhou Wu from the University of Chinese Academy of Sciences (UCAS) and Prof. Sokrates T. Pantelides of Vanderbilt University have pushed the sensitivity of single-atom vibrational spectroscopy to the chemical-bonding-configuration extreme, which is critical for understanding the correlation of lattice vibrational properties with local atomic configurations in materials.

Using a combination of experimental and theoretical approaches, the researchers demonstrated the effect of chemical-bonding configurations and the atomic mass of impurity atoms on local vibrational properties at the single-atom level.

The study was published in Nature Materials.

Mar 23, 2023

‘Inkable’ nanomaterial promises big benefits for bendable electronics

Posted by in categories: chemistry, computing, mobile phones, nanotechnology

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, , could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

Mar 22, 2023

Ultra-thin superconducting ink could be used in quantum computers

Posted by in categories: biotech/medical, chemistry, computing, quantum physics

A superconducting ink made through a simple process called chemical exfoliation could be used to print the cold circuits inside quantum computers and MRI machines.

By Leah Crane