Menu

Blog

Archive for the ‘chemistry’ category: Page 127

May 3, 2023

From natural dye to herbal medicine: a systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis

Posted by in categories: biotech/medical, chemistry

Indigo naturalis is a blue dye in ancient, as well as an extensive used traditional Chinese medicine. It has a wide spectrum of pharmacological properties and can be used to treat numerous ailments such as leukemia, psoriasis, and ulcerative colitis. This article aims to expand our understanding of indigo naturalis in terms of its chemical constituents, pharmacological action and clinical applications.

We searched PubMed, web of science, CNKI, Google academic, Elsevier and other databases with the key words of “Indigo naturalis”, and reviewed and sorted out the modern research of indigo naturalis based on our research results.

We outlined the traditional manufacturing process, chemical composition and quality control of indigo naturalis, systematically reviewed traditional applictions, pharmacological activities and mechanism of indigo naturalis, and summarized its clinical trials about treatment of psoriasis, leukemia and ulcerative colitis.

May 3, 2023

New Indigo Light Kills Bacteria at Hospitals

Posted by in categories: biotech/medical, chemistry, health

Year 2015 😗😁


Indigo-Clean is a new light that is capable of killing bacteria. Used in a healthcare settings, the device could help prevent the spread of dangerous microorganisms, including Methicillin-resistant Staphylococcus aureus (MRSA), a bacterium responsible for several difficult-to-treat infections in humans.

Bacteria in the air absorb the indigo-colored light, which then creates a chemical reaction within the microorganism. This creates an environment that acts like bleach, killing the microscopic lifeform, reports Tech Times.

Continue reading “New Indigo Light Kills Bacteria at Hospitals” »

May 2, 2023

Self-folding origami machines powered by chemical reactions

Posted by in categories: chemistry, robotics/AI

A Cornell-led collaboration harnessed chemical reactions to make microscale origami machines self-fold—freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.

The approach could one day lead to the creation of a new fleet of tiny autonomous devices that can rapidly respond to their .

Continue reading “Self-folding origami machines powered by chemical reactions” »

May 2, 2023

Using plasma against toxic PFAS chemicals

Posted by in categories: biotech/medical, chemistry, engineering, food

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project.

Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e., plasma. This reduces the PFAS molecular chains, allowing the to be removed at a low cost.

Per-and polyfluoroalkyl substances (PFAS) have many special properties. As they are thermally and chemically stable as well as resistant to water, grease and dirt, they can be found in a large number of everyday products: Pizza boxes and baking paper are coated with them, for example, and shampoos and creams also contain PFAS. In industry they serve as extinguishing and wetting agents, and in agriculture they are used in plant protection products.

May 2, 2023

Chemists are teaching GPT-4 to do chemistry and control lab robots

Posted by in categories: chemistry, robotics/AI

Augmenting the artificial intelligence GPT-4 with extra chemistry knowledge made it much better at planning chemistry experiments, but it refused to make heroin or sarin gas.

By Alex Wilkins

May 1, 2023

Human Metabolome Reference Database in a Biracial Cohort across the Adult Lifespan

Posted by in categories: biotech/medical, chemistry, life extension, sex

As one of the OMICS in systems biology, metabolomics defines the metabolome and simultaneously quantifies numerous metabolites that are final or intermediate products and effectors of upstream biological processes. Metabolomics provides accurate information that helps determine the physiological steady state and biochemical changes during the aging process. To date, reference values of metabolites across the adult lifespan, especially among ethnicity groups, are lacking. The “normal” reference values according to age, sex, and race allow the characterization of whether an individual or a group deviates metabolically from normal aging, encompass a fundamental element in any study aimed at understanding mechanisms at the interface between aging and diseases.

Apr 30, 2023

Two-component system could offer a new way to halt internal bleeding

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

MIT engineers have designed a two-component system that can be injected into the body and help form blood clots at the sites of internal injury. These materials, which mimic the way that the body naturally forms clots, could offer a way to keep people with severe internal injuries alive until they can reach a hospital.

In a mouse model of internal injury, the researchers showed that these components—a nanoparticle and a polymer—performed significantly better than hemostatic that were developed earlier.

“What was especially remarkable about these results was the level of recovery from severe injury we saw in the animal studies. By introducing two complementary systems in sequence it is possible to get a much stronger clot,” says Paula Hammond, an MIT Institute Professor, the head of MIT’s Department of Chemical Engineering, a member of the Koch Institute for Integrative Cancer Research, and one of the senior authors of a paper on the study.

Apr 29, 2023

Timber! The World’s First Wooden Transistor

Posted by in categories: chemistry, computing, engineering

“It was very curiosity-driven,” says Isak Engquist, a professor at Linköping University who led the effort. “We thought: ‘Can we do it? Let’s do it, let’s put it out there to the scientific community and hope that someone else has something where they see these could actually be of use in reality.’”

“I have colleagues who are at the forefront in a field we call electronic plants. … We have worked with dead woods for this project, but the next step might be to integrate it also into living plants.” —Isak Engquist, Linköping University.

Even though the wooden transistor still awaits its killer app, the idea to build wood-based electronics is not as crazy as it sounds. A recent review of wood-based materials reads, “Around 300 million years of tree evolution has yielded over 60,000 woody species, each of which is an engineering masterpiece of nature.” Wood has great structural stability while being highly porous and efficiently transporting water and nutrients. The researchers leveraged these properties to create conducting channels inside the wood’s pores and electrochemically modulate their conductivity with the help of a penetrating electrolyte.

Apr 29, 2023

Time Perception & Entrainment

Posted by in categories: chemistry, neuroscience, time travel

In this episode, I discuss how our brain and body track time and the role that neurochemicals, in particular dopamine and serotonin, but also hormones such as melatonin, allow us to orient ourselves in time. I review the three types of time perception: of the past, of the present, and the future, and how dopamine and serotonin adjust both our perception of the speed of the passage of time and our memory of how long previous experiences lasted. I also discuss circannual entrainment, which is the process by which our brain and body are matched to the seasons, and circadian (24 hours) entrainment, both of which subconsciously adjust our perceived measurement of time. I explain the mechanisms of that subconscious control. And I cover the ultradian (90 minutes) rhythms that govern our ability to focus, including how to track when these 90-minute rhythms begin and end for the sake of work and productivity. I include ten tools based on the science of time perception that you can apply to enhance productivity, creativity, and relationships in various contexts.

Thank you to our sponsors:
ROKA — https://www.roka.com — code “huberman“
Athletic Greens — https://www.athleticgreens.com/huberman.
InsideTracker — https://www.insidetracker.com/huberman.

Continue reading “Time Perception & Entrainment” »

Apr 29, 2023

Newly discovered electrical activity within cells could change the way researchers think about biological chemistry

Posted by in categories: biotech/medical, chemistry, neuroscience

The human body relies heavily on electrical charges. Lightning-like pulses of energy fly through the brain and nerves and most biological processes depend on electrical ions traveling across the membranes of each cell in our body.

These are possible, in part, because of an imbalance in electrical charges that exists on either side of a cellular membrane. Until recently, researchers believed the membrane was an essential component to creating this imbalance. But that thought was turned on its head when researchers at Stanford University discovered that similar imbalanced electrical charges can exist between microdroplets of water and air.

Now, researchers at Duke University have discovered that these types of electric fields also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. They form compartments inside the cell without needing the physical boundary of a membrane.