Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2433

Feb 28, 2017

US approves 3 types of genetically engineered potatoes

Posted by in categories: biotech/medical, food, genetics

BOISE, Idaho (AP) — Three types of potatoes genetically engineered to resist the pathogen that caused the Irish potato famine are safe for the environment and safe to eat, federal officials have announced.

The approval by the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration late last week gives Idaho-based J.R. Simplot Company permission to plant the potatoes this spring and sell them in the fall.

The company said the potatoes contain only potato genes, and that the resistance to late blight, the disease that caused the Irish potato famine, comes from an Argentine variety of potato that naturally produced a defense.

Continue reading “US approves 3 types of genetically engineered potatoes” »

Feb 28, 2017

Novel 3D printing technique uses magnets to create smart materials for soft robotics and medicine

Posted by in categories: 3D printing, biotech/medical, robotics/AI

New research describes a novel 3D printing technique for the production of smart materials that may find use in soft-robotics and advanced medicine.

In a recent academic paper the, “striking phenomena” that “can be produced by embedding magnetic particles into polymer with designed patterns,” are described in detail. These phenomena include smart materials with, “tunable elastic properties, giant deformational effects, high elasticity, anisotropic elastic and swelling properties, and quick response to magnetic fields.

As previously reported by 3D Printing Industry, investigations into smart and meta materials are increasingly using 3D printing techniques.

Continue reading “Novel 3D printing technique uses magnets to create smart materials for soft robotics and medicine” »

Feb 27, 2017

Super resolution imaging helps determine a stem cell’s future

Posted by in categories: biotech/medical, engineering

Scientists at Rutgers and other universities have created a new way to identify the state and fate of stem cells earlier than previously possible.

Understanding a stem cell’s fate—the type of cell it will eventually become—and how far along it is in the process of development can help scientists better manipulate for .

The beauty of the method is its simplicity and versatility, said Prabhas V. Moghe, distinguished professor of biomedical engineering and chemical and biochemical engineering at Rutgers and senior author of a study published recently in the journal Scientific Reports. “It will usher in the next wave of studies and findings,” he added.

Read more

Feb 27, 2017

Breakthrough Tech: Scientists Use Swarms of Nanorobots to Precisely Target Cancer Cells

Posted by in categories: biotech/medical, nanotechnology

Researchers announce a potential breakthrough in using nanotechnology to fight cancer.

Read more

Feb 27, 2017

This Neural Probe Is So Thin, The Brain Doesn’t Know It’s There

Posted by in categories: biotech/medical, cyborgs, robotics/AI

Wiring our brains up to computers could have a host of exciting applications – from controlling robotic prosthetics with our minds to restoring sight by feeding camera feeds directly into the vision center of our brains.

Most brain-computer interface research to date has been conducted using electroencephalography (EEG) where electrodes are placed on the scalp to monitor the brain’s electrical activity. Achieving very high quality signals, however, requires a more invasive approach.

Integrating electronics with living tissue is complicated, though. Probes that are directly inserted into the gray matter have been around for decades, but while they are capable of highly accurate recording, the signals tend to degrade rapidly due to the buildup of scar tissue. Electrocorticography (ECoG), which uses electrodes placed beneath the skull but on top of the gray matter, has emerged as a popular compromise, as it achieves higher-accuracy recordings with a lower risk of scar formation.

Continue reading “This Neural Probe Is So Thin, The Brain Doesn’t Know It’s There” »

Feb 27, 2017

‘They want to be literally machines’: Writer Mark O’Connell on the rise of transhumanists

Posted by in categories: biotech/medical, cryonics, cyborgs, life extension, neuroscience, transhumanism

Slate book columnist Mark O’Connell’s new book To Be a Machine, which is specifically about #transhumanism, is out tomorrow. So there’s a ton of reviews out in major media. The last chapter in the book is about my work. Here are 3 reviews just out on the book. ALSO, I highly encourage you to BUY the book to help transhumanism grow. Mark’s book is the first book specifically on the movement with this kind of international attention, and the better the book does the first week, the more people will know about transhumanism: http://www.theverge.com/2017/2/25/14730958/transhumanism-mar…biohackers &

http://www.theglobeandmail.com/arts/books-and-media/book-rev…e34127614/ &

http://www.themillions.com/2017/02/mark-oconnell-doesnt-want…rview.html

Continue reading “‘They want to be literally machines’: Writer Mark O’Connell on the rise of transhumanists” »

Feb 26, 2017

Biologists propose to sequence the DNA of all life on Earth

Posted by in category: biotech/medical

Still-unfunded plan would start with all plants, animals, and other eukaryotes—some 1.5 million species—for the cost of the original human genome project.

Read more

Feb 26, 2017

Brain-machine interfaces: Bidirectional communication at last

Posted by in categories: biotech/medical, cyborgs, robotics/AI

Since the early seventies, scientists have been developing brain-machine interfaces; the main application being the use of neural prosthesis in paralyzed patients or amputees. A prosthetic limb directly controlled by brain activity can partially recover the lost motor function. This is achieved by decoding neuronal activity recorded with electrodes and translating it into robotic movements. Such systems however have limited precision due to the absence of sensory feedback from the artificial limb. Neuroscientists at the University of Geneva (UNIGE), Switzerland, asked whether it was possible to transmit this missing sensation back to the brain by stimulating neural activity in the cortex. They discovered that not only was it possible to create an artificial sensation of neuroprosthetic movements, but that the underlying learning process occurs very rapidly. These findings, published in the scientific journal Neuron, were obtained by resorting to modern imaging and optical stimulation tools, offering an innovative alternative to the classical electrode approach.

Motor function is at the heart of all behavior and allows us to interact with the world. Therefore, replacing a lost limb with a robotic prosthesis is the subject of much research, yet successful outcomes are rare. Why is that? Until this moment, brain-machine interfaces are operated by relying largely on visual perception: the robotic arm is controlled by looking at it. The direct flow of information between the brain and the machine remains thus unidirectional. However, movement perception is not only based on vision but mostly on proprioception, the sensation of where the limb is located in space. “We have therefore asked whether it was possible to establish a bidirectional communication in a brain-machine interface: to simultaneously read out neural activity, translate it into prosthetic movement and reinject sensory feedback of this movement back in the brain”, explains Daniel Huber, professor in the Department of Basic Neurosciences of the Faculty of Medicine at UNIGE.

Providing artificial sensations of prosthetic movements.

Continue reading “Brain-machine interfaces: Bidirectional communication at last” »

Feb 26, 2017

10 Dangerous Brain-Damaging Habits to Stop Immediately

Posted by in categories: biotech/medical, food, neuroscience

Need a new excuse for not working too late and or studying to hard well you have one as it can create brain damage.


The only organ in our body that ‘thinks’ is often the one we think the least about.

Our brain is the single most important organ in our body, controlling everything we do, from breathing, walking, eating, sleeping, etc. It’s the central processor for all our bodily functions, the part that interprets what we see and hear, smell and taste, and even a place where the chemical reaction associated with love occurs.

Continue reading “10 Dangerous Brain-Damaging Habits to Stop Immediately” »

Feb 26, 2017

IARPA Wants Ways to Protect Nation from Genome Editing

Posted by in categories: bioengineering, biotech/medical, food

Sorry, you’re way, way too late as that genie is already in the hands to so many (good and bad) if we were going to control this; were over 2 years too late.


Gene editing could create pest-resistant crops, but it could also create new organisms that threaten humans, according to IARPA.

Read more