Menu

Blog

Archive for the ‘biological’ category: Page 54

Feb 28, 2023

Researchers plan supercomputers that are powered by human brain cells

Posted by in categories: biological, health, robotics/AI, supercomputing

“Computers that run on this ‘biological hardware’ could in the next decade begin to alleviate energy-consumption demands of supercomputing.”

Johns Hopkins University researchers have outlined plans for a “bio-computer” that is highly feasible in our lifetime.

“Computing and artificial intelligence have been driving the technology revolution, but they are reaching a ceiling,” Thomas Hartung, a professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, who is spearheading the work, said in a statement.

Feb 28, 2023

Better metric for prioritizing conservation of ‘evolutionarily distinctive’ species

Posted by in categories: biological, existential risks

An updated metric for prioritizing species’ conservation that incorporates scientific uncertainty and complementarity between species, in addition to extinction risk and evolutionary distinctiveness, has been published on February 28 in the open access journal PLOS Biology, authored by Rikki Gumbs from the Zoological Society of London (ZSL), U.K., and colleagues.

In 2007, ZSL established the Evolutionarily Distinct and Globally Endangered (EDGE) metric to prioritize species for conservation based on preserving embodied within . The approach allocates each species a score based on the evolutionary distance, measured in millions of years, that separates a species from its closest living relatives, and its conservation status in the IUCN Red List.

EDGE has since been applied to mammals, amphibians, birds, sharks and rays, corals, and flowering plants, and is used to allocate conservation funding. To update the EDGE metric to incorporate recent advances in and conservation, ZSL hosted a workshop for conservation scientists and practitioners, who reached a consensus on EDGE2—an updated metric that includes the of closely related species and uncertainty in species’ relationships and conservation status.

Feb 27, 2023

Researchers uncover new water monitoring technique

Posted by in categories: biological, chemistry, engineering, particle physics, sustainability

Water is a vital resource, and clean water is a necessity. Texas A&M University researchers have developed a new technique to monitor one of the key processes of purifying water in real time.

Raw water contains microscopic pathogens that are too small to remove during water and easily. Chemicals are added to form large clumps called flocs, which are easily filtered out. Flocculation is the process used in water treatment to remove suspended particles from the water.

“Coagulant chemicals need to be added to purify drinking water and remove turbidity (cloudiness) and microbes that are too small to be visible to the ,” said Dr. Kuang-An Chang, professor in the Zachry Department of Civil and Environmental Engineering at Texas A&M.

Feb 26, 2023

New Study Reveals Yet Another Surprising Function of Telomeres

Posted by in categories: biological, life extension

We’ve known about telomeres for more than 80 years, but these tiny, protective structures at the end of the chromosomes keep revealing secrets to us, including the possibility of having surprising functions.

It turns out that these key biological cogs can produce proteins, something previously thought impossible due to their simplicity.

While it’s not clear yet what these proteins might do, the fact that they exist at all is significant.

Feb 26, 2023

Scientists have successfully recorded brain activity from freely moving octopuses

Posted by in categories: biological, neuroscience, physics

Dr. Tamar Gutnick, first author and former postdoctoral researcher in the Physics and Biology Unit at the Okinawa Institute of Science and Technology (OIST), said, “If we want to understand how the brain works, octopuses are the perfect animal to study as a comparison to mammals. They have a large brain, an amazingly unique body, and advanced cognitive abilities that have developed completely differently from those of vertebrates.”

Octopuses have eight powerful and ultra-flexible arms, which can reach anywhere on their body. If we tried to attach wires to them, they would immediately rip it off, so we needed to get the equipment out of their reach by placing it under their skin.”

Continue reading “Scientists have successfully recorded brain activity from freely moving octopuses” »

Feb 25, 2023

Significance of mathematical modeling in understanding complex biological processes

Posted by in categories: biological, information science, mathematics, neuroscience

Humans and animals detect different stimuli such as light, sound, and odor through nerve cells, which then transmit the information to the brain. Nerve cells must be able to adjust to the wide range of stimuli they receive, which can range from very weak to very strong. To do this, they may become more or less sensitive to stimuli (sensitization and habituation), or they may become more sensitive to weaker stimuli and less sensitive to stronger stimuli for better overall responsiveness (gain control). However, the exact way this happens is not yet understood.

To better understand the process of gain control, a research team led by Professor Kimura at Nagoya City University in Japan studied the roundworm C. elegans. They found that, when the worm first smells an unpleasant odor, its nerve cells exhibit a large, quickly increasing, and continuous response to both weak and strong stimuli. However, after exposure to the odor, the response is smaller and slower to weak stimuli but remains large to strong stimuli, similar to the response to the first exposure to the odor. Because the experience of odor exposure causes more efficient movement of worms away from the odor, the nerve cells have changed their response to better adapt to the stimulus using gain control.

Then the researchers used mathematical modeling to understand this process. Mathematical modeling is a powerful tool that can be used to better understand complex biological processes. They found that the “response to first smell” consists of fast and slow components, while the “response after exposure” only consists of the slow component, meaning that the odor experience inhibits the fast component to achieve gain control. They further found that both responses could be described by a simple differential equation and that the slow and fast components correspond to the leaky integration of a first and second derivative term of the odor concentration that the worm senses, respectively. The results of this study showed that the prior odor experience only appears to inhibit the mechanism required for the fast component.

Feb 24, 2023

Testing shows people generate more respiratory aerosols during endurance exercise than resistance exercise

Posted by in categories: biological, biotech/medical, health

A team of biology researchers from Universität der Bundeswehr, Technische Universität München and the University of Cassino and Southern Lazio, has found that people exhale more aerosols when engaging in endurance exercise than they do when engaging in resistance exercise. The study is published in the Proceedings of the National Academy of Sciences.

As the global pandemic has progressed, scientists across the globe have studied various aspects of the SARS-CoV-2 virus spread. One such area of study has been comparison of types of activities that are more or less conducive to transmission of the .

In this new study, the researchers looked at exercise options and their related risk. Going to gyms to exercise is a popular way to keep in shape. But doing so can put people at risk from both airborne and surface viral and bacterial infections.

Feb 23, 2023

Feasibility of mapping the human brain with expansion x-ray microscopy

Posted by in categories: bioengineering, biological, biotech/medical, mapping, nanotechnology, neuroscience

Hey folks, I’m excited to share a new essay with y’all on my proposed route towards nanoscale human brain connectomics. I suggest that synchrotron ‘expansion x-ray microscopy’ has the potential to enable anatomical imaging of the entire human brain with sub-100 nm voxel size and high contrast in around 1 year for a price of roughly $10M. I plan to continue improving this essay over time as I acquire more detailed information and perform more calculations.

For a brief history of this concept: I started exploring this idea during undergrad (working with a laboratory-scale x-ray microscope), but was cut short by the pandemic. Now, I’m working on a PhD in biomedical engineering centered on gene therapy and synthetic biology, but I have retained a strong interest in connectomics. I recently began communication with some excellent collaborators who might be able to help move this technology forward. Hoping for some exciting progress!


By Logan Thrasher Collins.

Continue reading “Feasibility of mapping the human brain with expansion x-ray microscopy” »

Feb 23, 2023

Artificial neurons emulate biological counterparts to enable synergetic operation

Posted by in category: biological

An organic artificial spiking neuron based on nonlinear ionoelectronic phenomena is reported that is sensitive to ionic and biomolecular species common in neuronal signalling. The neuron realistically emulates the function and firing properties of biological neurons and enables biohybrid interfaces made of artificial and biological components that function in real time.

Feb 23, 2023

Lack of evidence for increased transcriptional noise in aged tissues

Posted by in category: biological

An increase in transcriptional noise generally assumed to characterize aged cells and tissues is shown to derive instead from technical and biological issues that underlie single-cell RNA sequencing experiments.

Page 54 of 209First5152535455565758Last