Menu

Blog

Archive for the ‘bioengineering’ category: Page 60

Nov 28, 2022

Predicting the Structures of Proteins

Posted by in categories: bioengineering, biological, mathematics, physics, robotics/AI

Kathryn Tunyasuvunakool grew up surrounded by scientific activities carried out at home by her mother—who went to university a few years after Tunyasuvunakool was born. One day a pendulum hung from a ceiling in her family’s home, Tunyasuvunakool’s mother standing next to it, timing the swings for a science assignment. Another day, fossil samples littered the dining table, her mother scrutinizing their patterns for a report. This early exposure to science imbued Tunyasuvunakool with the idea that science was fun and that having a career in science was an attainable goal. “From early on I was desperate to go to university and be a scientist,” she says.

Tunyasuvunakool fulfilled that ambition, studying math as an undergraduate, and computational biology as a graduate student. During her PhD work she helped create a model that captured various elements of the development of a soil-inhabiting roundworm called Caenorhabditis elegans, a popular organism for both biologists and physicists to study. She also developed a love for programming, which, she says, lent itself naturally to a jump into software engineering. Today Tunyasuvunakool is part of the team behind DeepMind’s AlphaFold—a protein-structure-prediction tool. Physics Magazine spoke to her to find out more about this software, which recently won two of its makers a Breakthrough Prize, and about why she’s excited for the potential discoveries it could enable.

All interviews are edited for brevity and clarity.

Nov 26, 2022

CAR T cell therapy could reach beyond cancer

Posted by in categories: bioengineering, biotech/medical, genetics

Engineered immune cells, known as CAR T cells, have shown the world what personalized immunotherapies can do to fight blood cancers. Now, investigators have reported highly promising early results for CAR T therapy in a small set of patients with the autoimmune disease lupus. Penn Medicine CAR T pioneer Carl June, MD, and Daniel Baker, a doctoral student in Cell and Molecular Biology in the Perelman School of Medicine at the University of Pennsylvania, discuss this development in a commentary published today in Cell.

“We’ve always known that in principle, CAR T therapies could have broad applications, and it’s very encouraging to see early evidence that this promise is now being realized,” said June, who is the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine at Penn Medicine and director of the Center for Cellular Immunotherapies at Penn’s Abramson Cancer Center.

T cells are among the immune system’s most powerful weapons. They can bind to, and kill, other cells they recognize as valid targets, including virus-infected cells. CAR T cells are T cells that have been redirected, through genetic engineering, to efficiently kill specifically defined .

Nov 26, 2022

CRISPR vs breast, colon, lung cancer: First human trial goes well

Posted by in categories: bioengineering, biotech/medical

A small human trial has tested CRISPR gene editing technology in the treatment of solid cancer tumors, including breast, colon, and lung cancer, with promising results.

Nov 25, 2022

New CRISPR gene-editing system can “drag-and-drop” DNA in bulk

Posted by in categories: bioengineering, biotech/medical, genetics

A new technique has been added to the CRISPR gene-editing toolbox. Known as PASTE, the system uses virus enzymes to “drag-and-drop” large sections of DNA into a genome, which could help treat a range of genetic diseases.

The CRISPR system originated in bacteria, which used it as a defense mechanism against viruses that prey on them. Essentially, if a bacterium survived a viral infection, it would use CRISPR enzymes to snip out a small segment of the virus DNA, and use that to remind itself how to fight off future infections of that virus.

Over the past few decades, scientists adapted this system into a powerful tool for genetic engineering. The CRISPR system consists of an enzyme, usually one called Cas9, which cuts DNA, and a short RNA sequence that guides the system to make this cut in the right section of the genome. This can be used to snip out problematic genes, such as those that cause disease, and can substitute them with other, more beneficial genes. The problem is that this process involves breaking both strands of DNA, which can be difficult for the cell to patch back up as intended, leading to unintended alterations and higher risks of cancer in edited cells.

Nov 24, 2022

CRISPR tools found in thousands of viruses could boost gene editing

Posted by in categories: bioengineering, biotech/medical

Phages probably picked up DNA-cutting systems from microbial hosts, and might use them to fight other viruses.

Nov 24, 2022

Will pigs solve the organ crisis? The future of animal-to-human transplants

Posted by in categories: bioengineering, biotech/medical, genetics

Unnecessary playing with nature.


In January, Bennett’s doctors offered him the chance to receive a heart from a pig. He took it. “I know it’s a shot in the dark, but it’s my last choice,” he said in a press release from the University of Maryland Medical Center in Baltimore, where he was being treated. On 7 January, doctors transplanted the heart, which had been genetically modified so that the human body would tolerate it.

Bennett survived for eight weeks with his new heart before his body shut down. After his death, the research team learnt that the transplanted organ was infected with a pig herpesvirus that had not been detected by tests1.

Continue reading “Will pigs solve the organ crisis? The future of animal-to-human transplants” »

Nov 23, 2022

Dr Renée Deehan — VP, Science & AI, InsideTracker — Evidence-Based And Actionable Wellness Solutions

Posted by in categories: bioengineering, biotech/medical, life extension, robotics/AI, science

Evidence-Based And Actionable Health, Wellness And Longevity Solutions — Dr. Renee DeHaan, Ph.D. — VP, Science & AI, InsideTracker


Dr. Renée Deehan, Ph.D. is the VP of Science & Artificial Intelligence at InsideTracker (https://www.insidetracker.com/), and leads a science team that builds and mines the world’s largest data set of blood, DNA, fitness tracking and phenotypic data from healthy people, creating evidence-based solutions that are simple, clear, and actionable.

Continue reading “Dr Renée Deehan — VP, Science & AI, InsideTracker — Evidence-Based And Actionable Wellness Solutions” »

Nov 23, 2022

3D Printing in Breast Reconstruction: From Bench to Bed

Posted by in categories: 3D printing, bioengineering, bioprinting, biotech/medical, computing

Circa 2021:3


Surgical management of breast cancer often results in the absence of the breast. However, existing breast reconstruction methods may not meet the need for a replacement tissue. Tissue engineering with the use of emerging materials offers the promise of generating appropriate replacements. Three-dimensional (3D) printing technology has seen a significantly increased interest and application in medically-related fields in the recent years. This has been especially true in complex medical situations particularly when abnormal or complicated anatomical surgical considerations or precise reconstructive procedures are contemplated. In addition, 3D bio-printing which combines cells with bio-material scaffolds offers an exciting technology with significant applications in the field of tissue engineering. The purpose of this manuscript was to review a number of studies in which 3D printing technology has been used in breast reconstructive surgical procedures, and future directions and applications of 3D bio-printing.

Breast cancer is the most common cancer diagnosed among US women and is second only to lung cancer as a cause of cancer death among women as of 2019. Because ~268,600 (almost six times than DCIS) new cases prove to be an invasive type of breast cancer (1), many women had to choose the removal of the breast, with immediate consideration for a replacement tissue. Although this was satisfactory in many patients, either saline or gel-filled breast implants (2) do carry real risks of complications such as infection, capsular contracture, implant dislocation, or deformities (3, 4). The option of autologous reconstruction can be more texturally natural aesthetically, but it requires a more complex procedure, significant time and expense, and possible muscle weakness or hernia formation at the tissue donor site (5). Tissue engineering intends to address these limitations by combining the 3D printing technology with synthetic or natural structural elements.

Continue reading “3D Printing in Breast Reconstruction: From Bench to Bed” »

Nov 22, 2022

Scientists Created Synthetic Muscle That’s Stronger Than Kevlar

Posted by in categories: bioengineering, biotech/medical

Researchers believe that synthetic muscle fibers could be used in a wide variety of sustainable and environmentally friendly industrial applications, including textiles, biomedicine, and tissue engineering. In a world where it takes up to 1,800 gallons of water to produce a single pair of jeans, the development of such environmentally safe processes that provide high-strength materials for industrial applications is a great step forward.


How strong can a muscle ever get? Can it have more endurance than metal? Can it be sturdier than Kevlar? While you might be inclined to answer the above in the negative, please pause, for scientists have succeeded in developing synthetic muscle that’s stronger than Kevlar. How about that for a flex?

The science and other stuff to know

Continue reading “Scientists Created Synthetic Muscle That’s Stronger Than Kevlar” »

Nov 22, 2022

Dr. David Markowitz, PhD — IARPA — High-Risk, High-Payoff Research For National Security Challenges

Posted by in categories: bioengineering, biological, genetics, information science, neuroscience, robotics/AI, security, surveillance

High-Risk, High-Payoff Bio-Research For National Security Challenges — Dr. David A. Markowitz, Ph.D., IARPA


Dr. David A. Markowitz, Ph.D. (https://www.markowitz.bio/) is a Program Manager at the Intelligence Advanced Research Projects Activity (IARPA — https://www.iarpa.gov/) which is an organization that invests in high-risk, high-payoff research programs to tackle some of the most difficult challenges of the agencies and disciplines in the U.S. Intelligence Community (IC).

Continue reading “Dr. David Markowitz, PhD — IARPA — High-Risk, High-Payoff Research For National Security Challenges” »

Page 60 of 222First5758596061626364Last