Menu

Blog

Archive for the ‘bioengineering’ category: Page 39

Jun 3, 2023

Discovery challenges 30-year-old dogma in associative polymers research

Posted by in categories: bioengineering, chemistry

A University of Virginia-led study about a class of materials called associative polymers appears to challenge a long-held understanding of how the materials, which have unique self-healing and flow properties, function at the molecular level.

Liheng Cai, an assistant professor of materials science and engineering and chemical engineering at UVA, who led the study, said the new discovery has important implications for the countless ways these materials are used every day, from engineering recyclable plastics to human tissue engineering to controlling the consistency of paint so it doesn’t drip.

The discovery, which has been published in the journal Physical Review Letters, was enabled by new associative polymers developed in Cai’s lab at the UVA School of Engineering and Applied Science by his postdoctoral researcher Shifeng Nian and Ph.D. student Myoeum Kim. The breakthrough evolved from a theory Cai had co-developed before arriving at UVA in 2018.

Jun 3, 2023

Engineering the bacteriophage T4 to serve as a vector for molecular repair

Posted by in categories: bioengineering, biotech/medical, genetics

A team of medical scientists at The Catholic University of America, in Washington, D.C., working with a colleague from Purdue University, has developed a way to engineer the bacteriophage T4 to serve as a vector for molecular repair. The study is reported in the journal Nature Communications.

Prior research has shown that many human ailments arise due to : , Down syndrome, and hemophilia are just a few. Logic suggests that correcting such genetic mutations could cure these diseases. So researchers have been working toward developing gene editing tools that will allow for safe editing of genes.

One of the most promising is the CRISPR gene editing system. In this new effort, the research team took a more general approach to solving the problem by working to develop a vector that could be used to carry different kinds of tools to targeted cells and then enter them to allow for healing work to commence.

Jun 3, 2023

An AAV-CRISPR/Cas9 strategy for gene editing across divergent rodent species

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Crispre cas 9.


A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in 80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.

The development of comparative gene editing strategies improves the translatability of animal research.

Jun 2, 2023

Plastic-eating bacteria: Genetic engineering and environmental impact

Posted by in categories: bioengineering, genetics

Year 2022 😗😁


Discover how plastic-eating bacteria were discovered and re-engineered to help tackle the worlds plastic problem.

May 31, 2023

Brain Computer Interfaces in 2050: Top 10 Future Technologies

Posted by in categories: augmented reality, bioengineering, business, genetics, robotics/AI, transhumanism

https://youtu.be/289mVc7PDsU

This video explores Brain Computer Interfaces in 2050. Watch this next video called “Transhumanism: 20 Ways It Will Change The World:” https://youtu.be/qcsihbGnXgE.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

Official Discord Server: https://discord.gg/R8cYEWpCzK
Patreon Page: https://www.patreon.com/futurebusinesstech.

Continue reading “Brain Computer Interfaces in 2050: Top 10 Future Technologies” »

May 28, 2023

Penn State researchers create first protein-based nano-computing agent

Posted by in categories: bioengineering, biotech/medical, computing, nanotechnology

The first protein-based nano-computing agent that functions as a circuit has been created by Penn State researchers. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Traditional synthetic biology approaches for cell-based therapies, such as ones that destroy cancer cells or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins to be expressed and degrade) and cost cellular energy in the process. A team of Penn State College of Medicine and Huck Institutes of the Life Sciences researchers are taking a different approach.

“We’re engineering proteins that directly produce a desired action,” said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair for research in the Department of Pharmacology. “Our protein-based devices or nano-computing agents respond directly to stimuli (inputs) and then produce a desired action (outputs).”

May 27, 2023

Gene Editing Gets a Triple Boost: “Happy Accident” Leads to Enhanced CRISPR Efficiency

Posted by in categories: bioengineering, biotech/medical, genetics

Scientists have enhanced the efficiency of CRISPR/Cas9 gene editing by threefold using interstrand crosslinks, without resorting to viral material for delivery. This approach boosts the cell’s natural repair mechanisms, allowing for more accurate and efficient gene editing, potentially improving disease research and preclinical work.

Gene editing is a powerful method for both research and therapy. Since the advent of the Nobel Prize-winning CRISPR/Cas9 technology, a quick and accurate tool for genome editing discovered in 2012, scientists have been working to explore its capabilities and boost its performance.

Researchers in the University of California, Santa Barbara biologist Chris Richardson’s lab have added to that growing toolbox, with a method that increases the efficiency of CRISPR/Cas9 editing without the use of viral material to deliver the genetic template used to edit the target genetic sequence. According to their new paper published in the journal Nature Biotechnology, their method stimulates homology-directed repair (a step in the gene editing process) by approximately threefold “without increasing mutation frequencies or altering end-joining repair outcomes.”

May 27, 2023

Protein-based nano-computer evolves in its ability to influence cell behavior

Posted by in categories: bioengineering, biotech/medical, computing, nanotechnology

The first protein-based nano-computing agent that functions as a circuit has been created by Penn State researchers. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Traditional synthetic biology approaches for cell-based therapies, such as ones that destroy or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins to be expressed and degrade) and cost cellular energy in the process. A team of Penn State College of Medicine and Huck Institutes of the Life Sciences researchers are taking a different approach.

“We’re engineering proteins that directly produce a desired action,” said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair for research in the Department of Pharmacology. “Our protein-based devices or nano-computing agents respond directly to stimuli (inputs) and then produce a desired action (outputs).”

May 25, 2023

China faces new Covid wave from XBB variant that could peak at 65 million cases a week

Posted by in categories: bioengineering, biotech/medical, genetics, government

So it is confirmed that the new variant of covid 19 virus is here but the actual spike now is in China. But will most likely spread globally much how previous viruses have done. Be sure to be prepared for another pandemic. Anyway what may be the possible cure would be new bioengineering techniques with crispr to eventually be immune to the virus like I have posted in some genetically engineered cells recently were made. But rest assured this could lead to a global pandemic because the current variant is taxing our current vaccination measures.


The country once had some of the harshest Covid restrictions on the planet, but the response from the government and the public is relatively muted this time.

May 25, 2023

Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience

In short blood dilution is very, very good for you.


In this talk, Dr. Irina Conboy discusses the role of repair and regeneration in lifespan and healthspan, contending that these factors, rather than entropy and time progression, truly govern our aging process. She describes the research her team is pursuing, investigating whether improving the efficiency of bodily repair in older individuals could effectively make them younger. She suggests that biological age could potentially be reversed and discusses heterochronic parabiosis and plasma dilution as potential ways to accomplish that. Conboy highlights recent research suggesting that old blood has a greater impact on cellular health and function than young blood. She presents her team’s experimental research on the rejuvenation effects of plasma dilution, demonstrating its significant impact on reducing senescence, neuroinflammation, and promoting neurogenesis in the brains of old mice.

Continue reading “Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)” »

Page 39 of 218First3637383940414243Last