Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease

Mitochondrial ATP production by oxidative phosphorylation (OXPHOS) is essential for cellular functions, such that mitochondria are known as the powerhouses of the cell (Verschueren et al., 2019). The mitochondrial ETC consists of five enzyme complexes in the inner membrane of the mitochondria. ETC generates a charge across the inner mitochondrial membrane, which drives ATP synthase (complex V) to synthesize ATP from ADP and inorganic phosphate.

Several studies have shown impairments of all five complexes in multiple areas of the AD brain (Kim et al., 2000, 2001; Liang et al., 2008). Mitochondrial dysfunction in AD is apparent from a decrease in neuronal ATP levels, which is associated with the overproduction of ROS, and indicates that mitochondria may fail to maintain cellular energy. A substantial amount of ATP is consumed in the brain due to the high energy requirements of neurons and glia. Since an energy reserve (such as fat or glucose) is not available in the central nervous system (CNS), brain cells must continuously generate ATP to sustain neuronal function (Khatri and Man, 2013). Mitochondria are the primary source of cellular energy production, but aged or damaged mitochondria produce excess free radicals, which can reduce the supply of ATP and contribute to energy loss and mitochondrial dysfunction in AD. Importantly, oxidative damage of the promoter of the gene encoding subunit of the mitochondrial ATP synthase results in reduced levels of the corresponding protein, leading to decreased ATP production, nuclear DNA damage to susceptible genes, and loss of function (Lu et al., 2004; Reed et al., 2008).

In advanced stages of AD, substantial nitration of ATP synthase subunits can take place, leading to the irregular function of the respiratory chain (Castegna et al., 2003; Sultana et al., 2006; Reed et al., 2009). Likewise, ATP-synthase lipoxidation occurs in the hippocampus and parietal cortex of patients with mild cognitive impairment (Reed et al., 2008). Compromised OXPHOS contributes to a characteristic mitochondrial dysfunction in AD brains, leading to decreased ATP production, elevated oxidative stress, and ultimately cell death (Reddy, 2006; Reddy and Beal, 2008; Du et al., 2012). The specific mechanisms of OXPHOS deficiency in AD remain a long-standing scientific question, but the role of mitochondrial F1Fo ATP synthase dysfunction in AD-related mitochondrial OXPHOS failure is emphasized by emerging evidence (Beck et al., 2016; Gauba et al., 2019).

Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system.

Pluribus: The Terrifying 4-Step Plan to Devour the Universe

This video explains the leading theory about the origins of Pluribus and the hive mind’s ultimate purpose. Its terrifying plan unfolds in 4 steps. If you’re fascinated by hard sci-fi, the Dark Forest Hypothesis and alien civilizations, then this deep dive is for you.

This is a commentary video about the Plur1bus TV series streaming on Apple TV.

Chapters:
00:27 Step 1 — The Joining.
01:38 Step 2 — The Megastructure Antenna.
02:50 Step 3 — Interstellar Hive Mind.
04:10 Step 4 — The Universal Mind.

Footage:
Produced in part with SpaceEngine PRO © Cosmographic Software LLC.
Some elements in this video are also made with the help of artificial intelligence.

Music:
\

How the brain develops and resolves inflammation

Brain development is a complex process involving, for example, the precise diversification and distribution of cells into distinct areas. The researchers behind the present study have developed a new method called spatial tri-omics, that enables them to simultaneously measure in a specific area of the brain: 1) the activity of genes, 2) how this activity is regulated by epigenetic changes, and 3) if this activity ultimately leads to the production of proteins.

The study is based on analyses of mouse and human brains at different stages of development. The authors generated a spatiotemporal tri-omic atlas of the mouse brain from postnatal day 0 (P0) to P21 and compared corresponding regions with the human developing brain.

“We’ve been able to use this multidimensional method to track brain development over time and map changes from birth to a young age in different parts of the brain, as well as study how the brain reacts to inflammation,” explains the senior author.

Inhibiting a master regulator of aging regenerates joint cartilage in mice

An injection that blocks the activity of a protein involved in aging reverses naturally occurring cartilage loss in the knee joints of old mice, a Stanford Medicine-led study has found. The treatment also prevented the development of arthritis after knee injuries mirroring the ACL tears often experienced by athletes or recreational exercisers. An oral version of the treatment is already in clinical trials with the goal of treating age-related muscle weakness.

Samples of human tissue from knee replacement surgeries—which include both the extracellular scaffolding, or matrix, in the joint as well as cartilage-generating chondrocyte cells—also responded to the treatment by making new, functional cartilage.

The study results suggest it may be possible to regenerate cartilage lost to aging or arthritis with an oral drug or local injection, rendering knee and hip replacement unnecessary.

World’s first fast-neutron nuclear reactor to power AI data centers

French startup Stellaria secures its first power reservation from Equinix for Stellarium, the world’s first fast-neutron reactor that reduces nuclear waste.

The agreement will allow Equinix data centres to leverage the reactor’s energy autonomy, supporting sustainable, decarbonized operations and powering AI capabilities with clean nuclear energy.

The Stellarium reactor, proposed by Stellaria, is a fourth-generation fast-neutron molten-salt design that uses liquid chloride salt fuel and is engineered to operate on a closed fuel cycle.

Brain has five ‘eras’, scientists say — with adult mode not starting until early 30s

Scientists have identified five major “epochs” of human brain development in one of the most comprehensive studies to date of how neural wiring changes from infancy to old age.

The study, based on the brain scans of nearly 4,000 people aged under one to 90, mapped neural connections and how they evolve during our lives. This revealed five broad phases, split up by four pivotal “turning points” in which brain organisation moves on to a different trajectory, at around the ages of nine, 32, 66 and 83 years.

“Looking back, many of us feel our lives have been characterised by different phases. It turns out that brains also go through these eras,” said Prof Duncan Astle, a researcher in neuroinformatics at Cambridge University and senior author of the study.

TACC’s “Horizon” Supercomputer Sets The Pace For Academic Science

As we expected, the “Vista” supercomputer that the Texas Advanced Computing Center installed last year as a bridge between the current “Stampede-3” and “Frontera” production system and its future “Horizon” system coming next year was indeed a precursor of the architecture that TACC would choose for the Horizon machine.

What TACC does – and doesn’t do – matters because as the flagship datacenter for academic supercomputing at the National Science Foundation, the company sets the pace for those HPC organizations that need to embrace AI and that have not only large jobs that require an entire system to run (so-called capability-class machines) but also have a wide diversity of smaller jobs that need to be stacked up and pushed through the system (making it also a capacity-class system). As the prior six major supercomputers installed at TACC aptly demonstrate, you can have the best of both worlds, although you do have to make different architectural choices (based on technology and economics) to accomplish what is arguably a tougher set of goals.

Some details of the Horizon machine were revealed at the SC25 supercomputing conference last week, which we have been mulling over, but there are still a lot of things that we don’t know. The Horizon that will be fired up in the spring of 2026 is a bit different than we expected, with the big change being a downshift from an expected 400 petaflops of peak FP64 floating point performance down to 300 petaflops. TACC has not explained the difference, but it might have something to do with the increasing costs of GPU-accelerated systems. As far as we know, the budget for the Horizon system, which was set in July 2024 and which includes facilities rental from Sabey Data Centers as well as other operational costs, is still $457 million. (We are attempting to confirm this as we write, but in the wake of SC25 and ahead of the Thanksgiving vacation, it is hard to reach people.)

Donate: Closer To Truth was created to explore fundamental questions of existence with top scientists and philosophers

We want to continue this mission, but we can’t do it alone.

Your contribution allows us to continue creating engaging content and exploring new perspectives with the world’s greatest thinkers.

All donations are tax-deductible and directly support new initiatives and projects at Closer To Truth. Thank you for your support!

Key biological marker into why young people self-harm uncovered

As many as one in six teenagers have self-harmed at some point in their lives. As well as being an indicator of emotional pain, self-harm is also the best-known predictor of death by suicide—yet researchers know little about the emotional and biological factors that lead to it.

A new study published in Nature Mental Health, led by Professor Rory O’Connor from the University of Glasgow helps to uncover the biological mechanisms behind why young people self-harm.

Expanding on his research into the psychological factors associated with self-harm, Professor O’Connor’s latest findings reveal that young people with a history of self-harm present a particular biological skin response to electrical activity—a physiological marker associated with difficulties in generating and managing emotions.

/* */