Toggle light / dark theme

This is a must watch video. It tells a painful truth of our real world. It is worth the watch. Please pass this video along if you are so inclined.


Excerpt: You live in a world of drug dealers. Only the drugs can be bought legally, and are perfectly priced to prevent you from inquiring into other areas. Your society exhibits a wealth of negative side effects from these drugs. Yet the bulk of your population still continues to use our products, even after they’ve shown themselves to be harmful. You live in a population that continues to grow more restless, agitated, and depressed, in part from eating our goodies and treats. Treats that are called “superstimuli” as the stimulus it produces inside your brain vastly exceeds the natural stimuli humans received throughout evolution, from natural foods.

*** I do this full time with the help of your donations or patronage. Your help is profoundly appreciated, and truly does help these videos continue, thank you!

Website ► http://sens.org
YouTube ► https://www.youtube.com/user/SENSFVideo
Facebook ► https://www.facebook.com/sensf
Twitter ► https://twitter.com/senstweet

“At SENS Research Foundation, we believe that a world free of age-related disease is possible. That’s why we’re funding work at universities across the world and at our own Research Center in Mountain View, CA.

Our research emphasizes the application of regenerative medicine to age-related disease, with the intent of repairing underlying damage to the body’s tissues, cells, and molecules. Our goal is to help build the industry that will cure the diseases of aging. ”

Aubrey de Grey ► http://goo.gl/Tc5QHl

Today, we would like to share the talk that Steven A. Garan gave at our recent conference in New York, Ending Age-Related Diseases: Investment Prospects & Advances in Research. The conference focused on bringing together the world of research and investment and bringing thought leaders, investors, the media, and the general public together.

Steven A. Garan is the Director of Bioinformatics at the Center for Research and Education on Aging (CREA) and a researcher at UC Berkeley National Laboratory. In his talk at Ending Age-Related Diseases, he discussed the impact of various present and future Silicon Valley technology breakthroughs on overcoming aging.

He gave a somewhat future-facing talk at the conference, which may surprise some people given his senior position at Berkeley; however, we consider this a sign of how times have changed in the last decade. Ten years ago, talking about ending aging would potentially have damaged your career and gotten you unfairly labeled as fringe, much as Dr. Aubrey de Grey was for many years until many others joined his crusade to end aging. It was therefore refreshing to hear Steven talk so positively about the future of biomedical science and about doing something about aging itself in order to end age-related diseases.

Read more

The Universe’s earliest epochs appear to be written into the small dwarf galaxies orbiting our own galactic home, the Milky Way.

A team of researchers studying dark matter noticed a strange trend in the brightness of the satellite galaxies around the Milky Way. There seem to be two classes of these orbiting dwarf galaxies—dim ones and bright ones—with few in the middle range. The researchers propose that this kink, when viewed on a graph, could be explained by a period early on in the Universe’s history called the re-ionization era.

Read more

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some stellar-mass black holes can grow bigger than others. In their paper published in The Astrophysical Journal Letters, Shu-Xu Yi, K.S. Cheng and Ronald Taam describe their theory and how it might work.

Since the initial detection of gravitational waves three years ago, five more detections have been observed—and five of the total have been traced back to emissions created by two stellar-mass black holes merging. The sixth was attributed to neutron stars merging. As part of their studies of such detections, space researchers have been surprised by the size of the stellar-mass black holes producing the gravity waves—they were bigger than other stellar-mass black holes. Their larger size has thus far been explained by the that they grew larger because they began their lives as stars that contained very small amounts of metal—stars with traces of metals would retain most of their mass because they produce weaker solar winds. In this new effort, the researchers suggest another possible way for stellar-mass black holes to grow larger than normal.

The new theory starts out by noting that some at the hearts of galaxies are surrounded by a disk of gas and dust. In such galaxies, there are often stars lying just outside the disk—stars that could evolve to become stellar-mass black holes. The researchers suggest that it is possible that sometimes, pairs of these stars wind up in the disk as they evolve into black holes. Such stellar-mass black holes would pull in material from the disk, causing them to grow larger. The researchers note that if such a scenario were to play out, it is also possible that the two merging could wind up with a synchronized spin resulting in a stellar-mass black hole that produces more gravity waves than if the spins had not been synchronized, making them easier for researchers to spot.

Read more

To understand how cells in the body behave, bioengineers create miniature models of the cells’ environment in their lab. But recreating this niche environment is incredibly complex in a controlled setting, because researchers are still learning all the factors that influence cell behavior and growth. By observing and then modifying their engineered mini-models, scientists are better able to identify those factors.

This form of cellular research is essential to the study of regenerative medicine, which focuses on replacing or repairing damaged tissue, often through the use of , a special population of that can give rise to all tissues in the body. Bioengineers face the central question of regenerative medicine: what causes stem cells to grow, organize, and mature from a small population of cells to complex organs?

To find an answer, a research team from the Johns Hopkins Institute for NanoBioTechnology borrowed a process commonly used in the electronics industry called micropatterning, in which the miniaturization of shapes increases the number of transistors on a circuit. The team created micropatterned shapes, coupled with machine learning, to see how confinement influences stem cell maturation and organization.

Read more

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: waves that range from a few tenths of a millimeter to several millimeters in length. Recently, scientists pushed ALMA to its limits, harnessing the array’s highest-frequency (shortest wavelength) capabilities, which peer into a part of the electromagnetic spectrum that straddles the line between infrared light and radio waves.

“High-frequency radio observations like these are normally not possible from the ground,” said Brett McGuire, a chemist at the National Radio Astronomy Observatory in Charlottesville, Virginia, and lead author on a paper appearing in the Astrophysical Journal Letters. “They require the extreme precision and sensitivity of ALMA, along with some of the driest and most stable that can be found on Earth.”

Under ideal atmospheric conditions, which occurred on the evening of 5 April 2018, astronomers trained ALMA’s highest-frequency, submillimeter vision on a curious region of the Cat’s Paw Nebula (also known as NGC 6334I), a star-forming complex located about 4,300 light-years from Earth in the direction of the southern constellation Scorpius.

Read more

This is the second part of a short fictional story about a man realizing for the first time that he has a deep desire to avoid aging and death. We published the first part of the story last Friday, and you can read it here.

I feel ashamed admitting to this, but I proceeded with wariness all the way to my door. That late at night, I didn’t meet anyone in the hallways or in the elevator. At first, I didn’t even want to take the elevator, as I was afraid that the girl might suddenly appear before me when the doors opened as I got in or out; however, for some reason, the idea of taking the stairs felt even worse, nearly terrifying. After hesitating some, I chose to take the elevator. Once I reached my door, I inserted the key in the lock, and after a moment of hesitation, I began turning it. At each turn, which echoed sinisterly in the hallway, I stopped as if to check that the sound didn’t attract the attention of God knows what supernatural creatures lurking in the dark. Absolutely nothing looked different than usual, yet I felt like a character in a horror movie.

I opened a crack between the door and the frame, stuck a hand in, and frantically searched for the light switch on the wall. “Finally home,” I said in an annoyed and embarrassingly loud and shaky voice to no one in particular, while still searching for the switch with no success. Once I found it, I flicked it, and as soon as the light went on, I pulled the door wide open, ran in, and finally slammed the door shut behind me.

Read more