Toggle light / dark theme

Researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has developed and tested a new #Interferometer


January 3, 2019 — By analyzing a pattern formed by the intersection of two beams of light, researchers can capture elusive details regarding the behavior of mysterious phenomena such as gravitational waves. Creating and precisely measuring these interference patterns would not be possible without instruments called interferometers.

For over three decades, scientists have attempted to improve the sensitivity of interferometers to better detect how the number of photons—particles that make up visible light and other forms of electromagnetic energy—leads to changes in light phases. Attempts to achieve this goal are often hampered by optical loss and noise, both of which can decrease the accuracy of interferometer measurements.

But now a team of researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has developed and tested a new interferometer to study the factors that contribute to these conditions, and they have devised solutions to overcome them. Their findings were published in the journal Applied Physics Letters, which promoted their paper to Editors’ Pick status. The editors award this distinction to noteworthy publications compiled in an exclusive list.

Scientists in India have hit out at speakers at a major conference for making irrational claims, including that ancient Hindus invented stem cell research.

Some academics at the annual Indian Science Congress dismissed the findings of Isaac Newton and Albert Einstein.

Hindu mythology and religion-based theories have increasingly become part of the Indian Science Congress agenda.

Read more

The results from a human pilot study that focused on treating idiopathic pulmonary fibrosis with senescent cell-clearing drugs has been published. The drugs target aged and damaged cells, which are thought to be a reason we age and get sick, and remove them from the body.

Senescent cells and aging

As we age, increasing numbers of our cells become dysfunctional, entering into a state known as senescence. Senescent cells no longer divide or support the tissues and organs of which they are part; instead, they secrete a range of harmful inflammatory chemical signals, which are collectively known as the senescence-associated secretory phenotype (SASP).

Read more

  • Genetic testing will be a cornerstone of healthcare in 2019, experts say.
  • There are two ways to do the testing: getting a costly but complete genetic workup through a doctor or opting for a cheaper at-home test like those sold by 23andMe.
  • Clinicians and advocates criticize the at-home approach, which they say prioritizes convenience over privacy and long-term health.
  • But entrepreneurs counter that the at-home approach lets more people access information.
  • Which method will win out, and at what cost?

As millions of Americans sat down to Thanksgiving dinner, the biomedical researcher James Hazel sent out a stark warning about the genetic-testing kits that he surmised would be a hot topic of conversation.

Most of them are neither safe nor private.


Certain types of bacteria can mutate to reproduce more quickly when exposed to microgravity, and that’s not great news for our space tourist dreams, seeing as we humans are teeming with bacteria.

It’s not clear why these bacteria have responded so positively to microgravity, but researchers are now figuring out ways to protect astronauts out in space, as well as mitigating the damage should a space-modified colony ever find its way back to Earth.

Researchers from the University of Houston monitored Escherichia coli cells through 1,000 generations of growth in simulated microgravity conditions, finding that it spread significantly faster than a control sample of unaltered bacteria.

Read more

High-energy X-ray beams and a clever experimental setup allowed researchers to watch a high-pressure, high-temperature chemical reaction to determine for the first time what controls formation of two different nanoscale crystalline structures in the metal cobalt. The technique allowed continuous study of cobalt nanoparticles as they grew from clusters including tens of atoms to crystals as large as five nanometers.

Read more

But the periodic table didn’t actually start with Mendeleev. Many had tinkered with arranging the elements. Decades before, chemist John Dalton tried to create a table as well as some rather interesting symbols for the elements (they didn’t catch on). And just a few years before Mendeleev sat down with his deck of homemade cards, John Newlands also created a table sorting the elements by their properties.

Mendeleev’s genius was in what he left out of his table. He recognised that certain elements were missing, yet to be discovered. So where Dalton, Newlands and others had laid out what was known, Mendeleev left space for the unknown. Even more amazingly, he accurately predicted the properties of the missing elements.

Dimitry Mendeleev’s table