Toggle light / dark theme

Biological life extension may hit limits. “Clearly, there are biological reasons for each species’ average lifespan, so why would anyone think that people could live for much longer than we do now?” Perhaps new breakthroughs will nudge lifespans upwards, but maybe these scientists are correct. This is why I still work on artificial death (non biological uploading to MVT awareness engines). Even if average ages go up many folks will still become terminally ill, and apart from MVT artificial death (second best to life) they will only have expensive cryogenics or doubtful religious faith as alternatives.


The average age of people over 110 has not increased for nearly 50 years.

Read more

A vocal minority in the United States is intent on stopping federal funding for research using human fetal tissue, citing stem cell–based or other alternatives as adequate. This view is scientifically inaccurate. It ignores the current limitations of stem cell research and disregards the value of fetal tissue research in finding therapies for incurable diseases. If there is to be continued rapid progress in treating cancer, birth defects, heart disease, and infectious diseases, then we need fetal tissue research.

Read more

A Lunar Industrial Facility (LIF). Yes, a Lunar Industrial Facility. Science fiction you might say. Impossible you retort. Too expensive even if it could be done might be your rejoinder. We don’t have the technology, could be another rhetorical dismissal. These are all responses those who do not live and breath this every day may have, but these are reactionary responses that do not reflect where we are in the closing years of the second decade of the twenty first century. In this missive, which is a companion to a space policy paper released Monday August 1, 2017, is written to show that indeed a lunar industrial facility is possible, we do have the technology, and no it will not be too expensive. Furthermore, it enables something that though it would seem to be science fiction, isn’t, which is a shipyard in lunar orbit for the construction of humanities first truly interplanetary space vehicles, as well as providing the materials for very large Earth orbiting space platforms for science and commerce.

Why do we need interplanetary vehicles? We have over 9.1 billion reasons, for that is the number of humans who will be on the Earth in 2050, only 33 years from now. The greatest fear is that with only a single planet’s resources, we cannot provide for this number in any reasonable manner. This underpins most of the rhetoric today regarding resource conservation and how to confront other global problems. This is a self defeating philosophy. Rather than rationing poverty, it should be our common goal to help create a world where all of our fellow planetary citizens can live in a society that continues to progress, materially as well as morally. Our science knows beyond any shadow of a doubt now that resources many orders of magnitude greater than what are available from the Earth, exist in the solar system around us.

Read more

Ultrasound technology has been in wide use for decades, helping submarines navigate and letting doctors non-invasively peer inside patients, but it might be about to get a whole lot more powerful. Researchers have developed an “ultra” ultrasound sensor that is so sensitive it can hear air molecules moving around or the vibrations of individual cells.

Read more

Age-related macular degeneration is the leading cause of vision loss in seniors, and existing treatments are few.

But now, experiments in pigs and rats suggest that stem cell therapy might help curb at least one form of the disease.

The results could soon lead to the first human trials of this therapy for macular degeneration, according to researchers from the U.S. National Eye Institute (NEI).

Read more

https://www.laserfocusworld.com/…/on-chip-optical-link-is-c…


Researchers of the University of Twente (UT; Enschede, Netherlands) have, for the first time, succeeded in connecting two parts of an electronic chip using an on-chip optical link, all fabricable with standard CMOS technology — a long-sought-after goal, as intrachip connection via light is almost instantaneous and also provides electrical isolation. Such a connection can, for example, be a safe way of connecting high-power electronics and digital control circuitry on a single chip without a direct electrical link. Vishal Agarwal, a UT PhD student, created a very small optocoupler circuit that delivers a data rate of megabits per second in an energy-efficient way.

Read more