Toggle light / dark theme

Another possibility for an alternative to traditional plastics?

A substance made by solitary bees.


Sometimes the answers to life’s most complicated questions are hidden in the smallest details. That’s a truth Veronica Harwood-Stevenson discovered when she found there might be a way to create a sustainable alternative to plastic products by mimicking a natural substance produced by bees.

You have probably encountered your fair share of honey bees and bumble bees in your life, but fewer people know about solitary bees — a name for the 20,000+ species of bees that live on their own apart from a hive or colony.

Surprised I haven’t seen more about this:


Tabloids reported over the weekend that a “bombshell” report found moving water on the Moon which could lead to “Moon colonization.” Obviously those headlines are misleading—there are no rivers flowing along the lunar surface. Let’s talk about what really happened.

NASA’s Lunar Reconnaissance Orbiter (LRO), a probe that has orbited the Moon since 2009, spotted water molecules being absorbed and released from grains of dust on the lunar surface throughout the day, based on the temperature. These results mark the only dataset recording the distribution of water during the lunar day, according to the paper published in the journal Geophysical Research Letters.

Read more

UC Berkeley chemists have proved that three carbon structures recently created by scientists in South Korea and Japan are in fact the long-sought schwarzites, which researchers predict will have unique electrical and storage properties like those now being discovered in buckminsterfullerenes (buckyballs or fullerenes for short), nanotubes and graphene.

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide – sand – more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting properties, though the creators were unaware of their identity as schwarzites, which theoretical chemists have worked on for decades.

Based on this theoretical work, chemists predict that schwarzites will have unique electronic, magnetic and optical properties that would make them useful as supercapacitors, battery electrodes and catalysts, and with large internal spaces ideal for gas storage and separation.

Read more

Organisms carry genes that result in certain characteristics when the genes are expressed. The possibilities for an organism to change thus reside in the genes. Animals and plants already have the necessary genes, but can turn them on and off as their surroundings change.


Several fish species can change sex as needed. Other species adapt to their surroundings by living long lives — or by living shorter lives and having lots of offspring. The ability of animals and plants to change can sometimes manifest in apparently extreme ways.

The cuckoo wrass is a fish species that lives in groups with one male and several females. If the male dies, one of the females develops into a new male. This can clearly have obvious advantages under certain conditions.

“Normally we think that the ability to change grows as more changes occur in the life of an average individual. But our research shows that this can work in reverse as well. The greater the ability of an average individual to change, the longer the individual will live,” says Irja Ida Ratikainen, an associate professor at the Norwegian University of Science and Technology (NTNU)’s Department of Biology.