Toggle light / dark theme

Atomtronics manipulates atoms much in the way that electronics manipulates electrons. It carries the promise of highly compact quantum devices which can measure incredibly small forces or tiny rotations. Such devices might one day be used to monitor Earth’s status by sensing water levels in the desert or in the search for minerals and oil. They will also be used in navigation, when GPS fails on planes or ships due to malicious attacks or simply because it is not available, e.g. in the deep seas. They might also one day act as portable quantum simulators solving complex computational tasks.

Coherent atomtronics manipulates atoms in the form of matterwaves originating from Bose-Einstein condensates (a state of matter in which all the atoms lose their individual identity and become one single quantum state with all the atoms being everywhere in the condensate at the same time). The atoms in these matterwaves behave much more like waves rather than individual particles. These matterwaves can be brought to interfere and thus made to respond to the tiniest changes in their environment such as the difference in gravitational pull between light organic material and heavy iron ore. When compared to light, atoms can be 10 billion times more sensitive, e.g. to rotation or acceleration, when compared to the photons that make up light. This sensitivity depends on the measurement time and—just like Newton’s apple—atoms fall due to Earth’s gravity. This forces the most sensitive interferometers to be very tall, reaching 10 meters and in some cases even 100 meters.

Read more

KARO, Indonesia (Reuters) — Indonesian officials warned on Monday against the prospect of further eruptions from an active volcano on the island of Sumatra after it emitted a huge column of ash, causing panic among residents.

Mount Sinabung, which has seen a spike in activity since 2010, erupted for around nine minutes on Sunday, sending clouds of volcanic ash 7 km (4.4 miles) into the sky.

Although no casualties were reported, officials monitoring the volcano warned of possible fresh eruptions.

Read more

SpaceX’s next mission for its Falcon Heavy high-capacity rocket is set for June 24, when it’ll take off from NASA’s Kennedy Space Center in Florida with 20 satellites on board that comprise the Department of Defense’s Space Test Program-2. That’s not all it’ll carry however: There also will be cargo pertaining to four NASA missions aboard the private launch vehicle, including materials that will support the Deep Space Atomic Clock, the Green Propellant Infusion Mission and two payloads that will serve scientific missions.

NASA detailed all of these missions in a press conference today, going into more detail about what each will involve and why NASA is even pursuing this research to begin with.

Read more

A new publication highlights how the complex interaction of NAD+ and cellular senescence pathways may complicate proposed anti-aging therapies that boost NAD+ using precursors.

What are epigenetic alterations?

One of the proposed reasons we age is the changes to gene expression that our cells experience as we get older; these are commonly called epigenetic alterations. These alterations harm the fundamental functions of our cells and can increase the risk of cancer and other age-related diseases.

Read more