Toggle light / dark theme

Cancer, by nature, is a destructive force. Sometimes, it spreads, or metastasizes, to a distant body part. While some cancer cells die during this process, others might go on to create additional tumors.

The majority of treatments are ineffective at curing metastatic cancer, so it is vital to find ways to stop the cancer cells from spreading.

Researchers believe electromagnetic fields can help. While this has been a point of interest for years, it is only recently that experts have begun to unravel the mechanism.

Twenty years ago, entertainment was dominated by a handful of producers and monolithic broadcasters, a near-impossible market to break into.


And now, over 50 years later, AI is bringing stories to life like we’ve never seen before.

Converging with the rise of virtual reality and colossal virtual worlds, AI has begun to create vastly detailed renderings of dead stars, generate complex supporting characters with intricate story arcs, and even bring your favorite stars—whether Marlon Brando or Amy Winehouse—back to the big screen and into a built environment.

While still in its nascent stages, AI has already been used to embody virtual avatars that you can converse with in VR, soon to be customized to your individual preferences.

Machine interfaces today can link up brains to play tetris together. Like it’s not hard enough to find a place for the L-shaped block without another cerebrum trying to overrule you.

Let’s go farther: What if we could create a digital replica of your brain and upload and download it like a piece of software?

This feat, aka whole brain emulation (WBE), is still decades, perhaps more than a century away. Outside of the pure science challenge, it could make us confront some of the most daunting questions about what it means to be human, and where man ends and machine begins.

Permitted For non-commercial purposes:

  • Read, print & download
  • Text & data mine
  • Translate the article

Not Permitted

  • Reuse portions or extracts from the article in other works
  • Redistribute or republish the final article
  • Sell or re-use for commercial purposes

Elsevier’s open access license policy.

A trio of physicists from the National Autonomous University of Mexico and Tec de Monterrey has solved a 2,000-year-old optical problem—the Wasserman-Wolf problem. In their paper published in the journal Applied Optics, Rafael González-Acuña, Héctor Chaparro-Romo, and Julio Gutiérrez-Vega outline the math involved in solving the puzzle, give some examples of possible applications, and describe the efficiency of the results when tested.

Over 2,000 years ago, Greek scientist Diocles recognized a problem with —when looking through devices equipped with them, the edges appeared fuzzier than the center. In his writings, he proposed that the effect occurs because the lenses were spherical—light striking at an angle could not be focused because of differences in refraction. Isaac Newton was reportedly stumped in his efforts to solve the problem (which became known as ), as was Gottfried Leibniz.

In 1949, Wasserman and Wolf devised an analytical means for describing the problem, and gave it an official name—the Wasserman-Wolf problem. They suggested that the to solving the problem would be to use two aspheric adjacent surfaces to correct aberrations. Since that time, researchers and engineers have come up with a variety of ways to fix the problem in specific applications—most particularly cameras and telescopes. Most such efforts have involved creating aspherical lenses to counteract refraction problems. And while they have resulted in improvement, the solutions have generally been expensive and inadequate for some applications.

Today, at just 9 years-old, Okpara, from Lagos, Nigeria, has built over 30 mobile games, according to a report by the CNN.


“You are always playing games; can’t you think about building your own games so others can play yours too?”

Those were the words of Basil Okpara Sr when he scolded his son, Basil Okpara Jr for spending too much time playing games.

Okpara Sr was angry when he uttered those words, but little did he know that his son, who was then only 7, would take his words seriously.