Menu

Blog

Page 8840

Apr 24, 2019

The Casimir torque: Scientists measure previously unexamined tiny force

Posted by in categories: computing, engineering, quantum physics

Researchers from the University of Maryland have for the first time measured an effect that was predicted more than 40 years ago, called the Casimir torque.

When placed together in a vacuum less than the diameter of a bacterium (one micron) apart, two pieces of metal attract each other. This is called the Casimir effect. The Casimir torque—a related phenomenon that is caused by the same quantum electromagnetic effects that attract the materials—pushes the materials into a spin. Because it is such a tiny effect, the Casimir torque has been difficult to study. The research team, which includes members from UMD’s departments of electrical and computer engineering and physics and Institute for Research in Electronics and Applied Physics, has built an apparatus to measure the decades-old prediction of this phenomenon and published their results in the December 20th issue of the journal Nature.

“This is an interesting situation where industry is using something because it works, but the mechanism is not well-understood,” said Jeremy Munday, the leader of the research. “For LCD displays, for example, we know how to create twisted liquid crystals, but we don’t really know why they twist. Our study proves that the Casimir torque is a crucial component of liquid crystal alignment. It is the first to quantify the contribution of the Casimir effect, but is not the first to prove that it contributes.”

Continue reading “The Casimir torque: Scientists measure previously unexamined tiny force” »

Apr 24, 2019

There Are Toxic Fungi in Space and No One Knows If They’re Dangerous

Posted by in categories: health, space

We really need to know more about the effects of fungi on human health in space.

Read more

Apr 24, 2019

The Enovate ME-S is a fully electric Chinese supercar

Posted by in category: futurism

This is a Chinese supercar concept. It is called the ME Sports (ME-S for short), and arrives from a new company called Enovate. When it finally sees the light of production in the year 2021, it plans on going really, really fast.

Like, 0-62mph in around three seconds, fast. And doesn’t it look sweet?

Speaking to TopGear.com at this year’s Shanghai motor show, an Enovate spokesperson said that because the company is shiny and new, it wanted to make something ‘iconic’.

Continue reading “The Enovate ME-S is a fully electric Chinese supercar” »

Apr 24, 2019

Scientists Unveil a ‘Brain Decoder’ That Turns Neural Activity Into Speech

Posted by in categories: biological, information science, neuroscience

The spoken word is a powerful tool, but not all of us have the ability to use it, either due to biology or circumstances. In such cases, technology can bridge the gap — and now that gap is looking shorter than ever, with a new algorithm that turns messages meant for your muscles into legible sounds.

Converting the complex mix of information sent from the brain to the orchestra of body parts required to transform a puff of air into meaningful sound is by no means a simple feat.

Continue reading “Scientists Unveil a ‘Brain Decoder’ That Turns Neural Activity Into Speech” »

Apr 24, 2019

Self-powered ‘pacemaker for life’ in pigs unveiled

Posted by in category: biotech/medical

Scientists on Tuesday unveiled a battery-free pacemaker that generates its energy from the heartbeats of pigs in what could pave the way for an “implant for life” in humans suffering from heart defects.

Millions of patients rely on pacemakers —small electrical implants in the chest of abdomen—to help regulate their heartbeats after chronic or acute illness.

Even with recent technological advances, pacemaker batteries can be rigid or bulky, and may need replacing several times over the lifespan of a .

Continue reading “Self-powered ‘pacemaker for life’ in pigs unveiled” »

Apr 24, 2019

Brain Implant Device Allows People With Speech Impairments to Communicate With Their Minds

Posted by in categories: computing, neuroscience

A new brain-computer interface translates neurological signals into complete sentences.

Read more

Apr 24, 2019

Study opens a new route to achieving invisibility without using metamaterials

Posted by in categories: electronics, materials

A pair of researchers at Tokyo Institute of Technology (Tokyo Tech) describes a way of making a submicron-sized cylinder disappear without using any specialized coating. Their findings could enable invisibility of natural materials at optical frequency and eventually lead to a simpler way of enhancing optoelectronic devices, including sensing and communication technologies.

Making objects invisible is no longer the stuff of fantasy but a fast-evolving science. ‘Invisibility cloaks’ using metamaterials—engineered materials that can bend rays of light around an object to make it undetectable—now exist, and are beginning to be used to improve the performance of satellite antennas and sensors. Many of the proposed metamaterials however only work at limited wavelength ranges such as microwave frequencies.

Now, Kotaro Kajikawa and Yusuke Kobayashi of Tokyo Tech’s Department of Electrical and Electronic Engineering report a way of making a without a cloak for monochromatic illumination at optical frequency—a broader range of wavelengths, including those visible to the human eye.

Continue reading “Study opens a new route to achieving invisibility without using metamaterials” »

Apr 24, 2019

Modified ‘white graphene’ for eco-friendly energy

Posted by in categories: biotech/medical, materials

Scientists from Tomsk Polytechnic University (TPU), together with colleagues from the United States and Germany, have found a way to obtain inexpensive catalysts from hexagonal boron nitride or “white graphene.” The technology can be used in the production of environmentally friendly hydrogen fuel.

The researchers have found a new way to functionalize a dielectric, otherwise known as white graphene, i.e. (hBN), without destroying it or changing its properties. Thanks to the new method, the researchers synthesized a polymer nano carpet with strong covalent bond on the samples.

Prof Raul Rodriguez from the TPU Research School of Chemistry & Applied Biomedical Sciences explains:

Continue reading “Modified ‘white graphene’ for eco-friendly energy” »

Apr 24, 2019

Secret to lab-on-a-chip breakthrough: Matte black nail polish

Posted by in categories: bioengineering, biotech/medical, genetics

BYU electrical engineering students have stumbled upon a very unconventional method that could speed up lab-on-a-chip disease diagnosis.

When someone goes to the hospital for a serious illness, if a bacterial infection is suspected, it can take up to three days to get results from a bacteria culture test. By then, it is often too late to adequately treat the infection, especially if the bacteria are resistant to common antibiotics.

BYU students are working on a project to diagnose antibiotic resistant bacteria, or superbugs, in less than an hour. Their method relies on extracting bacteria from a blood sample and then pulling DNA from that . If specific genetic codes indicating antibiotic resistance are present in the DNA, fluorescent molecules can be attached to these sites. Laser light can then be shined on the DNA samples and the molecules will light up.

Continue reading “Secret to lab-on-a-chip breakthrough: Matte black nail polish” »

Apr 24, 2019

Lightweight Velocité“Maglev” Hidden Motor Electric Bike

Posted by in categories: energy, transportation

Imagine that instead of adding a motor to a bicycle, parts of the bicycle are designed to function as the motor.

In this case the wheel rim contains the motor magnets and the frame houses the inductive coils. The inductive coils use energy from the battery (hidden in the frame downtube) to repel the magnets on the rim to make the wheel spin.

Lightweight calls this “Maglev Transrapid technology” and they claim that this Velocité eBike can go up to 100 kph (62 mph) with its 500 watts of power! They are currently limiting it to 45 kph (28 mph) to fall with in the limits of a speed pedelec.

Continue reading “Lightweight Velocité‘Maglev’ Hidden Motor Electric Bike” »