Physicists have uncovered surprising order inside one of the most puzzling states in modern materials science. It is a strange middle ground where electrons begin to behave differently, but full superconductivity has not yet taken hold.
Instead of falling into disorder, the system retains coordinated patterns right at the point where normal electrical behavior starts to break down. The finding suggests this transition is guided by an underlying structure, not randomness.
Fractionally charged excitations at zero magnetic field in twisted MoTe2 bilayers, a recently discovered fractional quantum anomalous Hall system, are observed via anyon-trions, excitonic complexes formed by binding a trion to a fractional charge.
Living organisms are made up of hundreds of thousands of cells that cooperate to create the organs and systems that breathe, eat, move, and think. Now, researchers from Japan have developed a new way to track how and when cells touch each other to work together in these ways. In a study published in January in Cell Reports Methods, researchers from The University of Osaka reported the development of fluorescent markers for monitoring cell communication under a microscope.
Cells communicate with each other by making cell-to-cell contacts, and fluorescent markers are often used to visualize these contacts. The most commonly used marker for this purpose is green fluorescent protein (GFP). GFP can be divided into two halves that are expressed on different cells. When the cells touch, the two halves come together to form a complete GFP, letting off a fluorescent signal.
“Split GFP is useful for detecting the formation of stable connections between cells,” says lead author of the study Takashi Kanadome. “But because it takes time for the rejoined GFP to emit its signal and the association is irreversible, this approach cannot be used to detect dynamic cell–cell interactions in real-time.”
An array of 15,000 qubits made from phosphorus and silicon offers an unprecedentedly large platform for simulating quantum materials such as perfect conductors of electricity
Satellites and spacecraft in the vast region between the earth and moon and just beyond — called cislunar space — are crucial for space exploration, scientific advancement and national security. But figuring out where exactly to put them into a stable orbit can be a huge, computationally expensive challenge.
In an open-access database and with publicly available code, researchers at Lawrence Livermore National Laboratory (LLNL) have simulated and published one million orbits in cislunar space. The effort, enabled by supercomputing resources at the Laboratory, provides valuable data that can be used to plan missions, predict how small perturbations might change orbits and monitor space traffic.
To begin, the Space Situational Awareness Python package takes in a range of initial conditions for an orbit, like how elliptical and tilted the orbit is and how far it gets from the earth.
Scientists say a real warp drive may no longer be pure science fiction, thanks to new breakthroughs in theoretical physics. Recent studies suggest space itself could be compressed and expanded, allowing faster-than-light travel without breaking known laws of physics. Unlike sci-fi engines, this concept wouldn’t move a ship through space — it would move space around the ship. Researchers are now exploring how energy, gravity, and exotic matter could make this possible. In this video, we explain how a warp drive could work and how close science really is.
Are we living inside a computer simulation? The evidence is more compelling than you think.
In this deep exploration of the Simulation Hypothesis, we examine the scientific and philosophical arguments that suggest our reality might be code. From Nick Bostrom’s groundbreaking trilemma to quantum mechanics acting like a computer program, from the fine-tuned constants of physics to Elon Musk’s probabilistic arguments—we follow the evidence wherever it leads. Whether we’re simulated or not, the question reveals profound truths about consciousness, reality, and what it means to be human.
A neuroscientist, a philosopher and a physicist convene to discuss one of the biggest and most significant questions of all time: human consciousness, what we know and don’t know about it, and whether science will ever be able to understand what makes you, you.
Recorded Oct 16, 2016 at The 92nd Street Y, New York.