Toggle light / dark theme

Construction is one of the oldest professions as people have been building shelters and structures for millennia. However the industry has evolved quite a bit in the way they design, plan, and build structures. For decades, technology has been used in the construction industry to make jobs more efficient and construction projects and structures safer.

In recent years, construction companies have increasingly started using AI in a range of ways to make construction more efficient and innovative. From optimizing work schedules to improving workplace safety to keeping a secure watch on construction facilities, https://www.cognilytica.com/2019/06/26/ai-today-podcast-95-a…struction/ href=https://www.cognilytica.com/2019/06/26/ai-today-podcast-95-ai-use-case-series-ai-in-construction/ rel=“nofollow noopener noreferrer” target=_blank title=https://www.cognilytica.com/2019/06/26/ai-today-podcast-95-ai-use-case-series-ai-in-construction/>AI in the construction industry is already proving its value.

Astronomers don’t know exactly when the first stars formed in the Universe because they haven’t been observed yet. And now, new observations from the Hubble Space Telescope suggest the first stars and galaxies may have formed even earlier than previously estimated.

Why? We *still* haven’t seen them, even with the best telescope we’ve got, pushed to its limits.

A group of researchers used Hubble to look back in time (and space) as far as it could see, hoping to study these first generation of stars of the early Universe, which are called Population III stars. Hubble peered and squinted back to when the Universe was just 500 million years old – which is thought to be Hubble’s limit — and found no evidence of these very first stars.

As we head into summer, it’s hard not to think about traveling. Not only it is the traditional season for vacations, but we’ve also been cooped up inside for months and most of us are probably itching to explore something new. Of course, given that we’re in the middle of a global pandemic where travel—especially by plane—isn’t a great idea, planning a trip may be more fantasy than reality these days. Either way, you may be curious about which countries have opened up to tourists. If so, an interactive map put out by the International Airline Transportation Association is a great tool.

Light-sheet images of DEEP-Clear processed zebrafish showing proliferative cells (pink) and the nervous system (green). Credit: TU Wien / Max Perutz Labs.

An important observation that helped to develop the new method was that the combination of different chemical treatments had a synergistic effect, allowing for fast depigmentation and tissue clearing. “Shortening chemical processing preserves the integrity of tissues and organisms, so that the molecules and internal structures of interest are more likely to be retained,” explains Marko Pende, the developer of the clearing method, from the lab of Hans-Ulrich Dodt at the TU Wien and the Center for Brain Research (CBR) of the Medical University of Vienna, and one of the first authors of the study. This way multiple organisms could be imaged from different clades ranging from mollusks to bony fish to amphibians. “These are just a few examples. We believe that the method is applicable to multiple organisms. It was just not tried yet”, explains Prof. Hans Ulrich Dodt, senior author of the study.

Recently, OpenAI collaborated with UberAI to propose a new approach — Synthetic Petri Dish — for accelerating the most expensive step of Neural Architecture Search (NAS). The researchers explored whether the computational efficiency of NAS can be improved by creating a new kind of surrogate, one that can benefit from miniaturised training and still generalise beyond the observed distribution of ground-truth evaluations.

Deep neural networks have been witnessing success and are able to mitigate various business challenges such as speech recognition, image recognition, machine translation, among others for a few years now.

According to the researchers, Neural Architecture Search (NAS) explores a large space of architectural motifs and is a compute-intensive process that often involves ground-truth evaluation of each motif by instantiating it within a large network, and training and evaluating the network with thousands or more data samples. By motif, the researchers meant the design of a repeating recurrent cell or activation function that is repeated often in a larger Neural Network blueprint.

Although planets, stars, and galaxies all spin along an axis of rotation, new research suggests that the universe itself might also revolve around an axis, or several, but on a cosmic scale challenging one of the fundamental assumptions of astrophysics, the cosmological principle, which holds that the same physical laws are homogeneous and uniform, isotropic, everywhere in the universe. This exotic new theory paints a picture of a spinning universe that creates structural anisotropies and asymmetries on cosmic scales of hundreds of millions of light years.

Enter one Lior Shamir, a computational astronomer at Kansas State University, who presented evidence that has yet to be peer reviewed at the recent virtual Zoom meeting of the American Astronomical Society that the early universe rotated like an enormous, complex galaxy, and continued this momentum through the galaxies we see today, hinting that the early universe had a more uniform structure that it has been steadily losing through time, resulting in an increasingly chaotic cosmos.